Spatial Field Reconstruction with INLA

João Rino-Silvestre, Centra-Sim, University of Lisbon November 12th, 2019

Examples

Predictions from INLA for input starlight age of NGC 0309 when 100, 75, 50, 25 and 5% (left to right) of the data is used. Upper panels show the starlight input, bottom the INLA prediction (source, González-Gaitán et al. (2018)).

Spatial Field Reconstruction with INLA

Examples

Predictions from INLA for H α EW map of NGC 0309 with S/N of 10, 2, 1, 0.5 and 0.3 (left to right). Upper panels show input and bottom panels INLA predictions (source, González-Gaitán et al. (2018)).

Spatial Field Reconstruction with INLA

Examples

Probability maps of NGC 0309 for three ranges of age, log(t[yr]), arranged anticlockwise: log(t[yr])>9.5, 9.3>log(t[yr])>9.0 and log(t[yr]<8.9. The bins were chosen to represent bottom (<2.5%), middle (32%–68%) and top (>97.5%) quantiles of the reconstructed population age map (source, González-Gaitán et al. (2018)).

Spatial Field Reconstruction with INLA

Structure

• Introduction

- Bayesian Statistics
- Latent Gaussian Models (LGMs)
 - Notation & Properties
- Inference

• INLA

- A different approach
- The Method
- Applications in Astronomy
- Present

Introduction Bayesian Statistics

Let *x* be a latent field and *y* an observable

- Prior density: (y|x)
- Posterior density: (x|y)
- Joint density: $(x,y) = (x) \cdot (y|x) = (y) \cdot (x|y)$
- Marginal posterior density: $(x_i|y) = \int (x|y) dx_{-i}$

Introduction Latent Gaussian Models (LGMs)

- Bayesian Additive Models (BAMs)
 - y_i is assumed to belong to an exponential family with mean μ_i
 - y_i is linked to a structured additive predictor, $_i$, via a link function g(.), such that $g(\mu_i) = _i$, where

$$_{i} = + \sum_{j=1}^{n_{f}} f^{(j)}(u_{ji}) + \sum_{k=1}^{n} _{k} z_{ki} + _{i}$$
(1)

- LGMs are a subset of BAMs, with a predictor as (1) and which assign a Gaussian prior to $\{f^{(j)}(.)\}, \{k\}$ and $\{k\}$.
- **Applications:** relaxation of regression models, dynamic models (U_t), spatial models (U_s), ...

Introduction Latent Gaussian Models (LGMs)

• Notation

- (.|.) conditional density of its arguments
- *x* all n Gaussian variables $\{ _{i} \}, \{ f_{(i)}(.) \}, \{ _{k} \}$ and $\{ _{i} \}$
- $(x|\theta_1)$ is Gaussian with assumed zero mean, precision matrix $Q(\theta_1)$, and hyperparameters θ_1
- $N(x; \mu, \Sigma)$ Gaussian density $N(\mu, \Sigma)$ at configuration x
- $(y|x,\theta_2)$ the distribution for the n_d observables y (assumed conditionally independent given x and θ_2)
- $\theta = (\theta_1, \theta_2)^T$, with dim $(\theta) = m$

Introduction Latent Gaussian Models (LGMs)

The posterior then reads:

•
$$(\boldsymbol{x}, \boldsymbol{\theta} | \boldsymbol{y}) \propto (\boldsymbol{\theta}) (\boldsymbol{x} | \boldsymbol{\theta}) \prod_{i} (y_{i} | \boldsymbol{x}_{i}, \boldsymbol{\theta})$$

 $\propto (\boldsymbol{\theta}) | \boldsymbol{Q}(\boldsymbol{\theta}) |^{1/2} \exp\left(-\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q}(\boldsymbol{\theta}) \boldsymbol{x} + \sum_{i} \log\left((y_{i} | \boldsymbol{x}_{i}, \boldsymbol{\theta})\right)\right)$

- **Properties** (satisfied by many LGMs but not all)
 - Latent field *x* admits conditional independence properties, making it a Gaussian Markov random field with a sparse precision matrix $Q(\theta)$
 - The number of hyperparameters, m, is small ($m \le 6$)

Both are usually required to produce fast inference

Introduction Inference

- Aim: infer posterior marginals for $(x_i|y)$, $(\theta|y)$ and $(_j|y)$
- Possibilities:
 - Markov Chain Monte Carlo
 - Poor performance when applied to LGMs
 - Deterministic approximations
 - Better computational cost

INLA A different approach

• The posterior marginals of interest can be written as

$$(\mathbf{x}_{i}|\mathbf{y}) = \int (\mathbf{x}_{i}|\boldsymbol{\theta}, \mathbf{y}) (\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}$$
$$(\mathbf{y}) = \int (\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta}_{-j}$$

• INLA (Rue et al. (2009)) uses this form to construct nested approximations $\sim (\mathbf{x}_i | \mathbf{y}) = \int \sim (\mathbf{x}_i | \boldsymbol{\theta}, \mathbf{y}) \sim (\boldsymbol{\theta} | \mathbf{y}) d\boldsymbol{\theta}$ $\sim (\mathbf{y}_i | \mathbf{y}) = \int \sim (\boldsymbol{\theta} | \mathbf{y}) d\boldsymbol{\theta}_{-i}$

where \sim (.|.) is an approximated density of its arguments and the integrations are performed numerically. The Laplace approximation of $(\theta|y)$ is given by

$$\sim (\boldsymbol{\theta} | \boldsymbol{y}) \propto \frac{(\boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{y})}{\sim_{l} (\boldsymbol{x} | \boldsymbol{\theta}, \boldsymbol{y})} \Big|_{\boldsymbol{x} = \boldsymbol{x} \ast (\boldsymbol{\theta})}$$
(2)

1) Exploring $\sim(\boldsymbol{\theta}|\boldsymbol{y})$

a) locate mode of $\sim(\theta|y)$, θ^* : using the difference between successive gradient vectors, approximate second derivatives of $\log(\sim(\theta|y))$;

b) at θ^* compute the negative Hessian matrix H > 0 and let $\Sigma = H^{-n}$; use standardized variables z instead of θ , using the form

$$\boldsymbol{\theta}(\boldsymbol{z}) = \boldsymbol{\theta} * + \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \boldsymbol{z}$$

c) explore $\log (\sim (\theta | y))$: start from the mode (z = 0); go in the positive direction of z_1 with step δ_z , while

$$\log(\sim(\boldsymbol{\theta}(\mathbf{0}||\boldsymbol{y})) - \log(\sim(\boldsymbol{\theta}(\boldsymbol{z})|\boldsymbol{y})) < \#$$
(3)

then switch direction; treat the remaining coordinates in the same way (fig. 1)

Fig. 1 - Illustration of the posterior marginal for θ : in (a) the mode is locate and the Hessian and co-ordinate system for **z** are computed; in (b) each co-ordinate direction is explored (•) while (3) prevails; new points (•) are explored combining coordinates of (•) (source: Rue et al. (2009)).

d) use computed before to construct an interpolant to $\log(\sim(\theta|y))$ and compute marginals using numerical integration from this interpolant

- 2- Approximating $(\mathbf{x}_i | \boldsymbol{\theta}, \boldsymbol{y})$
 - a) Approximate the modal configuration $\mathbf{x}_{-i} * (\mathbf{x}_i, \boldsymbol{\theta}) \approx \%_{\sim_i} (\mathbf{x}_{-i} | \mathbf{x}_i)$ (4)

b) Define a ROI around i, $\$_i(\theta)$, for only those x_j 'close' to x_i should have an effect on its marginal;

c) Consider the Laplace approximation

$$\widetilde{}_{\&'}(\mathbf{x}_{i}|\boldsymbol{\theta},\boldsymbol{y}) \propto \frac{(\boldsymbol{x},\boldsymbol{\theta},\boldsymbol{y})}{\widetilde{}_{!}(\boldsymbol{x}_{-i}|\mathbf{x}_{i},\boldsymbol{\theta},\boldsymbol{y})}|_{\boldsymbol{x}_{-i}=\boldsymbol{x}_{-i}*(\mathbf{x}_{i},\boldsymbol{\theta})}$$
(5)

19-11-2019

Spatial Field Reconstruction with INLA

d) derive a simplified Laplace approximation $\widetilde{}_{(\&,`}(\mathbf{x}_i | \boldsymbol{\theta}, \boldsymbol{y}))$ by doing a series expansion of $\widetilde{}_{\&,`}(\mathbf{x}_i | \boldsymbol{\theta}, \boldsymbol{y})$ around $\mathbf{x}_i = \mu_i(\boldsymbol{\theta})$

e) expanding the log densities of both numerator and denominator in (5) around $x_i = \mu_i(\theta)$, we get

$$\log\left(\begin{array}{c} \sim \\ (\&^{s}) \\ (&^{s}) \\ (&$$

where

$$\begin{aligned} & , _{i}^{(1)}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{j \in \cdot \setminus i} . _{j}^{2}(\boldsymbol{\theta}) \{1 - j * / /_{\sim_{i}}(\mathbf{x}_{i}, \mathbf{x}_{j})^{2} \} \mathbf{d}_{j}^{(3)} \{\mu_{i}(\boldsymbol{\theta}), \boldsymbol{\theta}\} . _{j}(\boldsymbol{\theta}) +_{ij}(\boldsymbol{\theta}) \\ & , _{i}^{(3)}(\boldsymbol{\theta}) = \sum_{j \in \cdot \setminus i} \mathbf{d}_{j}^{(3)} \{\mu_{i}(\boldsymbol{\theta}), \boldsymbol{\theta}\} \{. _{j}(\boldsymbol{\theta}) +_{ij}(\boldsymbol{\theta})\}^{3} \\ & \mathbf{d}_{j}^{(3)}(\mathbf{x}_{i}, \boldsymbol{\theta}) = \frac{\partial^{3}}{\partial \mathbf{x}_{j}^{3}} \log\{-(\mathbf{y}_{j}|\mathbf{x}_{j}, \boldsymbol{\theta})\} |_{\mathbf{x}_{j} = \mathscr{K}_{\gamma}(\mathbf{x}_{j}|\mathbf{x}_{i})} \\ & \mathbf{x}_{i}^{s} = \frac{\mathbf{x}_{i} - \mu_{i}(\boldsymbol{\theta})}{. _{i}(\boldsymbol{\theta})} \end{aligned}$$

Spatial Field Reconstruction with INLA

f) finally, fit a skew normal distribution of the form (7) to (6) so that the third derivative at the mode is $\mathbf{a}_{i}^{(3)}$, the mean is $\mathbf{a}_{i}^{(1)}$ and the variance is 1.

$$_{(N)}(z) = \frac{2}{2} O(\frac{z-3}{2}) 1(+\frac{z-3}{2})$$
(7)

O(.) - density function 1(.) - distribution function a - skewness parameter ξ - location parameter ω - scale parameter

INLA Applications in Astronomy

IC 1396, inferred data

IC 1396, real data

(source, Garcia et al. (2020))

INLA Applications in Astronomy

NGC 2451A, inferred data

NGC 2451A, real data

(source, Garcia et al. (2020))

Spatial Field Reconstruction with INLA

INLA Applications in Astronomy

ASASSN15db_agel INLA reconstruction

19-11-2019

ASASSN15db_agel 5% sampling of real data

ASASSN15db_agel real data

Spatial Field Reconstruction with INLA

20

INLA Applications in Astronomy

PTF11qnr_agel real data

PTF11qnr_agel 5% sampling of real data

PTF11qnr_agel INLA reconstruction

Spatial Field Reconstruction with INLA

INLA Present

• INLA + Monte Carlo Radiative Transfer (MCRT)

- 1) Generate low resolution simulations of radiative transfer using MC
- 2) Preprocess output files
- 3) Feed results as priors to INLA
- 4) Get high resolution posteriors in a fraction of the time

