Applications of Fourier disentangling on the spectra of multiple stars

Mgr. Jan Elner

Outline

- 1. What is NOT on my poster motivation
- 2. Method of Fourier disentangling
- 3. Program KOREL
- 4.96 Her
- 5. Summary

Cute kitties


Cute dogs

Historical monuments

Magnificent mountains

There are other interesting things, like

Fourier decomposition (disentangling) of stellar spectra

Simple disentangling

 Simultaneous decomposition of spectra and determination of their RV, or direct solution of orbital parameters (Simon & Sturm, 1994)

$$\begin{bmatrix} \mathbf{M}_{A1} & \mathbf{M}_{B1} \\ \dots & \dots \\ \mathbf{M}_{AN} & \mathbf{M}_{BN} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{A} \\ \mathbf{I}_{B} \end{bmatrix} = \begin{bmatrix} \mathbf{I}(\mathbf{t}_{1}) \\ \dots \\ \mathbf{I}(\mathbf{t}_{N}) \end{bmatrix}$$

- Set of $M \times N$ linear equations, M number of pixels in a typical exposition, N number of expositions
- M are matrices with units shifted off-diagonal for RV in pixels

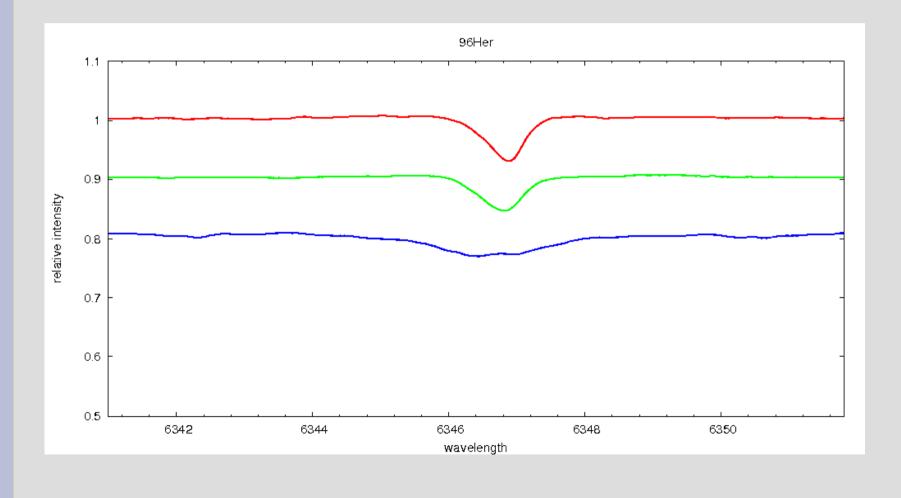
Fourier disentangling

- Hadrava (1995)
- Calculates with Fourier images of the observed spectra
 - numerically easier
 - allows further generalization

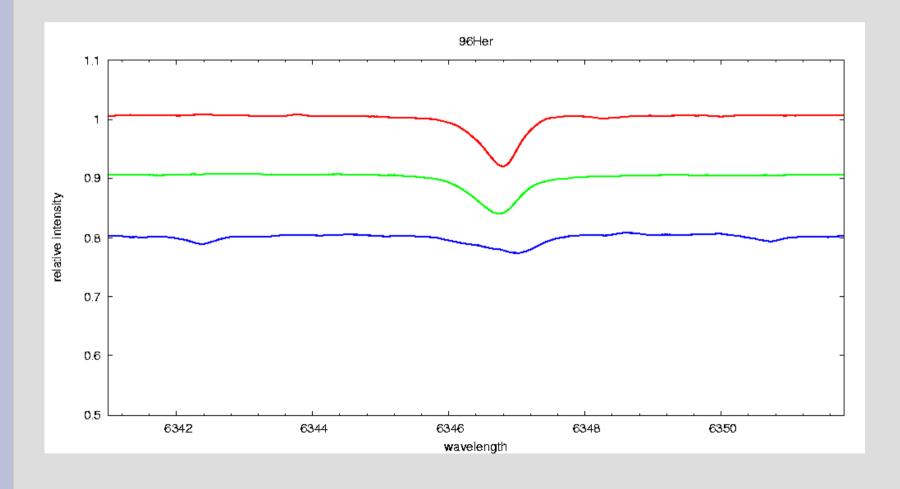
Principle of the Fourier disentangling

 Principle of disentangling lies in minimalization of the sum of integrated squares of deviations between observed and modelled spectra

$$0 = \delta \sum_{l=1}^{N} \int \left| I(x,t_l) - \sum_{j=1}^{n} I_j(x) * \Delta_j(x,t_l,p) \right|^2 dx$$


KOREL

- Developed by dr. Hadrava (1995, 1997)
- Fourier disentangling
- Decomposition of time series of multiple systems' spectra (max. 5 components)
- From k spectra of n stars (k>n) finds individual spectra and corresponding RV by the method of least squares
- It is possible to determine orbital elements of the system – using simplex minimalization method


96 Her

- All components visible in the spectrum are B2-3V
- Variation of RV discovered in 1911 (Mitchell)
- Presence of another component (besides the binary) confirmed by several observations
- Suspicion for apsidal motion, precession of the orbit of the close binary A+B, orbitally bound changes in brightness

All spectra – 3 components

All spectra – 2 stellar components + 1 telluric

96 Her – summary

- Cca 70 spectra processed and used for calculations with KOREL
- Third component was separated from the composite spectra – its nature is not definetely distinguished – small sensitivity to longer periods
- Orbital parameters in individual datasets differ

That's all for now...

Thank you for your attention