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Abstract. Dynamical features of one-dimensional electromagnetic solitons formed 
in a relativistic interaction of a linearly polarized laser light with underdense cold 
plasma are investigated. The relativistic Lorentz force in an intense laser light 
pushes electrons into longitudinal motion generating coupled longitudinal-transverse 
waves. In a weakly relativistic approximation these modes are well described by the 
generalized nonlinear Schrödinger type of equation, with two extra nonlocal terms. 
Here, an original analytical solution for a moving EM soliton is derived in an 
implicit form. For an isolated soliton, our analysis shows that the motion down-
shifts the soliton eigen-frequency and decreases its amplitude. The effect of the 
soliton velocity on the stability, is analytically predicted and checked numerically. 
Results show an enhanced stability in comparison with the standing soliton case. 
Rich dynamics with examples of (un)stable soliton propagation and breathers 
creation and formation of unstable structures of cusp type is exposed numerically. 
The soliton stability is a base for the understanding a complex soliton-pair 
interaction; which critically depends on solitons amplitude, velocity and a mutual 
phase relation. Simulations of two interacting EM solitons show a critical 
dependence on the solitons amplitude, velocity and mutual phase; resulting in either 
elastic collisions or a break up of the soliton pair. 
 
 

1. INTRODUCTION 
 
 The propagation of intense laser radiation into plasmas has attracted 
considerable attention in the past. Recently, the interest for this problem is renewed 
mainly due to two prospective applications: development of the fast ignition concept 
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in inertial fusion and x-ray lasers. Currently, available laser intensity is as high as 
221W/cm10  at a focus, with tendency to reach soon 223 W/cm10 . These 

intensities are well above the regime where, in the laser plasma interactions, the 
electrons are forced into motion with relativistic velocities. This strongly affects the 
dynamics of the laser pulse propagation and with combination of the nonlinear 
effects induces a large number of nonlinear relativistic phenomena. One of the most 
interesting phenomena is creation of the relativistic electromagnetic (EM) solitons. 
Relativistic EM solitons are localized EM structures self-trapped by a locally 
modified plasma refractive index due to the relativistic electron mass increase and 
the electron density drop in the ponderomotive force of an intense laser light. These 
solitons, generated behind the front of the laser pulse are composed of nonlinear, 
spatially localized low-frequency EM fields with a group velocity close to zero. A 
large part of the laser pulse energy can be trapped inside these relativistic solitons, 
creating a significant channel for laser beam energy conversion. This is a known 
problem in plasma physics which has been studied widely in the past [1-8] but it has 
recently attracted fresh attention. The relativistic EM solitons in an idealized case of 
circular polarization were extensively investigated, analytically within the one-
dimensional (1D) fully relativistic hydrodynamics model and by PIC (particle-in-
cell) simulations [1, 9]. Recently, relativistic EM solitons in electron-ion plasmas 
have been studied in detail, analytically [9-14], numerically by fluid simulations 
[15] and by multi-dimensional PIC simulations [7,16-20]. On the other hand, a 
physically more realistic, but also a more complex case of relativistic EM solitons 
with a linear polarization, was studied in a weak amplitude limit by some of these 
authors [20, 21]. Generally taken, the research on solitons has been receiving much 
attention because of their fundamental importance in nonlinear science [4], as well 
as being considered to be the essential component of plasma turbulence [13]. 

In this paper, we treat a case of a linearly polarized intense laser light. In 
laser-plasma interactions, relativistic Lorentz force sets electrons into motion, 
generating coupled longitudinal-transverse wave modes. These modes in the 
framework of one-dimensional weakly relativistic cold plasma approximation can be 
well described by a single dynamical equation of the generalized nonlinear 
Schrödinger type[21], with two extra nonlocal (derivative) terms. A new analytical 
solution for the one-dimensional moving EM soliton case is calculated in the implicit 
form and verified numerically. The soliton existence and its stability properties 
depending on the soliton velocity and self-frequency shift are studied in detail, by 
using analytically calculated conserved quantities: photon number (P) and 
Hamiltonian (H). The results are compared to the standing (non-moving) relativistic 
EM solitons case [21]. Finally, numerical simulations of the model equation were 
performed to check the analytical results and study soliton dynamics influenced by 
small perturbations. A good agreement with our analytical results is found.  The 
results of the soliton stability analysis are base for the understanding a complex 
soliton-pair interaction, which critically depends on solitons amplitude, velocity and 
a mutual phase relation. Simulations of two interacting EM solitons show a critical 
dependence on the solitons amplitude, velocity and mutual phase; resulting in either 
elastic collisions or a break up of the soliton pair. 
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2. DYNAMICAL EQUATIONS 

 
We consider a long intense laser pulse propagating through cold collisionless plasma 
with fixed ions and start with writing the fully relativistic one-dimensional model. 
The nonlinear EM wave equation, continuity equation and electron momentum 
equation, in the Coulomb gauge, read: 
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where 2/ mceAa =  is normalized vector potential in the y direction, n is the 
electron density, p is the electron momentum in the x direction, 

2/12222 )/1( cmpa ++=γ , ||E  is the longitudinal electric field, n0 is the 

unperturbed electron density, and 2/1
0

2 )/4( mnep πω =  is the background electron 
plasma frequency. 
 
 In a weakly relativistic limit for 1|| <<a  and 1|| <<nδ , introducing the 
normalized perturbed electron density 00 /)( nnnn −=δ  and dimensionless 

variables xcx p )( 1−→ ω  and tt p )( 1−→ ω , the wave equation for the vector 
potential envelope A (a~A·e-it+cc) is obtained, as (details are given in Ref. 21): 
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 Equation (4) has a form of a generalized nonlinear Schrödinger (GNLS) 
equation with two extra nonlocal (derivative) nonlinear terms. We can readily derive 
three conserved quantities: photon number P and Hamiltonian H and momentum M: 
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 We look for a localized stationary solution of (4), in a form of a moving 
soliton: 
 

])(exp[)( 2tiuiuA λθρ +=                                           (6) 
 
where, vtxu −= , and v  is the soliton velocity. Introducing the ansatz (6) in the 
equation (4), we obtain two equations for the soliton phase and amplitude, 
respectively: 
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 Under vanishing (localized) boundary conditions 

0)(,)(),( →uuu uuu ρρρ  for ±∞→u , the first integration of (7a) approximately 
gives vuu =)(θ , while the first integration of (7b) gives: 
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Additional integration of (8) yields a moving soliton solution in an implicit form 
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λρ  is the maximum amplitude of the linearly polarized 

moving EM soliton with the self-frequency 22 v−=Λ λ . For a zero soliton 
velocity, 0=v , the above solution readily coincides with the standing soliton result 
of the GNLS equation (4), given by some of these authors [21]. The equation (9) 
imposes the constraint on the maximum possible soliton amplitude, as 

55.15/12 ≈<cρ . For 55.10 <<ρ  the soliton profile (9) is the secant 
hyperbolic, alike the soliton solution of the standard cubic NLS equation. When 0ρ  
increases and approaches the value of 55.1≈cρ , the original NLS soliton profile 
steepens and transits toward the pointed, cusp type of a profile. 
 
 In order to check the validity of the analytical solution (9), the stationary 
equations (7a,b) are numerically solved with the vanishing boundary conditions 

0)(,)(),( →uuu uuu ρρρ  when ±∞→u . Numerical results are in a good 
agreement with the analytical solution for the amplitude (9) and phase )(uθ  (Fig. 1). 
The only noticeable difference is in the phase )(uθ  (analytical approximation). 
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Fig. 1. Example of the EM soliton amplitude profile (a) and phase (b) calculated 
analytically and numerically for v=0.4 and λ=0.3. 
 
 
 The photon number ),( vP λ  for the soliton (9), can be calculated explicitly, as: 
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 When the soliton velocity is zero, expression (10) agrees with the standing 
soliton solution, obtained earlier [21]. 
 
 Furthermore, with the ansatz (6), explicit contribution of the velocity dependent - 
"kinetic" terms in the Hamiltonian (5) is singled out, by: 
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Substitution of (9) into (11) enables us, after rather cumbersome integration, to 
obtain the explicit analytical expression for the Hamiltonian in a form: 
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3. STABILITY ANALYSIS 
 
 In order to check the stability of the moving soliton, we use the renown 
Vakhitov-Kolokolov stability criterion [2], according to which, solitons are stable 
with respect to longitudinal perturbations, if: 
 

,02 >
λd

dPo                                                   (13) 

 
where, P0  is the soliton photon number defined by (5). The function )(0 λP , given 
by the expression (10), is shown in Fig. 2, for several values of soliton velocity. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Photon number P0(λ) shown for different soliton velocities. 
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 According to the condition (13), moving EM solitons turn out to be stable 
in the region sλλ < , where the instability threshold, sλ  corresponds to the 
maximum value of 0P  for a given velocity (Fig. 2). Therefore, we can conclude that 
small amplitude linearly polarized moving solitons within the weakly relativistic 
model are stable. The increase of the soliton velocity shifts the instability threshold 

sλ  toward larger values leading to the enhanced stability in comparison to the 
standing soliton case. 
 The stability criterion for solitons can be alternatively formulated in terms 
of Hamiltonian and photon number interrelation, following the analysis given in 
Ref. 22. According to Ref. 22, the concavity of the H-P curves is related to the 
stability of the solitons: concave downwards implies stability, while concave 
upwards corresponds to instability. This is illustrated in Fig. 3, where H-P curves for 
different soliton velocities are plotted. There are two branches for each soliton 
velocity: the upper, unstable and the lower, stable branch. The turning point 
(maximum value of P) on each H-P curve coincides with the maximum value of 0P  
on )(0 λP  diagram (Fig.2) for corresponding soliton velocity and produces the same 
instability threshold values sλ . The numerically calculated curves )(0 λP  and 

)( 00 PH  are in a good agreement with the analytical results.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Hamiltonian versus photon number for different soliton velocities. The lower 
branches are stable. 
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 Considering the Vakhitov-Kolokolov stability criterion and the constraints 
on parameters v,λ  in the analytical soliton solution (9), we can further expose 
different regions of the soliton existence and stability. The limits on the parameters 

v,λ : 
 

02,012/),(51 222 >−>− vv λλρ                             (14) 
 
together with the soliton stability condition 0λ/ 2 >ddP , define the regions of the 
soliton existence and stability in ( v,λ ) space. These regions are shown in Fig. 4. 
 Above the curve (a) no analytical soliton solution exists. However, 
numerically we can find the stationary soliton solution. Discrepancy in numerical 
and analytical results in this region is attributed to small initial differences in the 
phase )(uθ  between the approximate analytical and numerical solutions. Below the 
curve (c), there are no localized solutions, neither analytical nor numerical. The area 
of the soliton existence is separated by curve (b). Above the curve (b) is the region 
where 0λ/ 2

0 <ddP , resulting in the existence of the unstable solitons. The stable 
soliton solutions are possible just between curves (b) and (c), where the stability 
condition 0λ/ 2

0 >ddP , is satisfied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Soliton existence and stability in different regions of (λ, v) parameter space. 
Curve (a) 1-5ρ(λ,v)2/12=0, curve (b) dP/dλ2=0 and curve (c) 2λ2-v2=0. 
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4. SIMULATION RESULTS 

 
 In order to check analytical results and our predictions concerning the 
moving relativistic EM soliton properties and the velocity effect on its existence and 
stability, we have performed a set of direct numerical simulations of the nonlinear 
model GNLS equation (4). The split-step Fourier method [23], originally developed 
for the NLS equation, is implemented in our numerical algorithm. 
 Numerical results prove that initially launched moving solitons (9), with 
parameters inside the stability region, bordered with the curves (b) and (c) in Fig. 4., 
remain stable. The initially unstable solitons with parameters in the region bordered 
with curves (a) and (b) in Fig. 4. exhibit a slow oscillatory relaxation toward the 
corresponding stable solitons with the same photon number. 
 The analytically predicted influence of the soliton velocity on its stability 
properties is verified numerically. We performed a set of simulations with the initial 
condition in a form of solitons with fixed value of λ  and several values for the 
soliton velocity v. An example of these simulations is illustrated in Fig. 5. The 
standing soliton (v=0), with amplitude A0=1.56, outside the stability region 
( 5.0=λ ) relaxes toward corresponding stable soliton with the same photon 
number [Fig. 5(a)]. The moving soliton with the same λ  but with the soliton 
velocity (v=0.3) slightly below the stability threshold exhibits a long-lived 
oscillations around the corresponding stable soliton state [Fig. 5(b)]. Further 
increase of the soliton velocity (v=0.7) turns the soliton inside the soliton stability 
region and the soliton propagation becomes stable [Fig 5(c)]. In this way we have 
confirmed our analytical prediction that the increasing soliton velocity shifts the 
instability threshold sλ  toward larger values and acts as a stabilizing factor. 
 For stable solitons being initially perturbed with the perturbations ε  in a 
form of )1(0 ερρ +=p , internal oscillation modes are excited and solitons exhibit 
long lived oscillating behavior of the breather type. If the initial perturbation of the 
stable moving soliton grows, the frequency of the excited oscillations increases and 
amplitude excursion from the initial value grows. A further increase of the 
perturbation level leads to a further deviation from the stable state and eventually to 
a rapid aperiodic growth of the amplitude. In this stage, this process is very similar 
to the initial stage of the collapse phenomenon [4]. However, the amplitude growth 
is accompanied by a continuous change of the soliton profile toward a highly 
pointed structure of a cusp type. This process continues up to the point when the 
amplitude reaches the critical value 55.1≈cρ , creating a highly unstable cusp 
structure. Creation of this structure coincides with a break up of the spectral 
numerical scheme (conservation loss for H and P) and it was not possible to follow 
the dynamic behaviour further. This is illustrated in Fig. 6, where the evolution of 
the initially launched moving (v=0.4) soliton with the photon number 
P<Pmax=P0(λs ≈4.45, inside the stability region, for different level of the 
perturbations is followed. 
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Fig. 5. Different dynamical regimes of the soliton with λ=0.5: a) Standing soliton in 
the unstable region with amplitude A0=1.56, P=3.23; b) Moving soliton (v=0.3) in 
the unstable region, A0=1.5, P=3.9; c) Moving soliton (v=0.7) in the stable region, 
A0=0.26, P=1.34. 
 
 The observed long lived oscillations of the soliton amplitude show a similar 
behavior as in the case of the NLS equation with a local power-law nonlinearity, 
described in Ref. 24. This nonlinear evolution is illustrated in Fig. 7 in the )(0 λP  
diagram for the stable soliton 4.0,334.0 2.727, 00 === vP λ . The introduced 
perturbations ( 1ε ) at the stable soliton increase the photon number to 01 PP >  and 
excite internal oscillations around the new value of 1λ  which corresponds to the 
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stable soliton with 1P . During the oscillations, the soliton profile periodically 
changes its shape. Due to the influence of the nonlocal terms in Eq. (4), the periodic 
amplitude increase leads toward the cusp shape of the soliton profile. With the 
further perturbation increase ( 2ε ) the oscillatory behavior remains until the photon 
number reaches the value above maxP  when the intersection with the curve )(0 λP  
is absent and the corresponding stable soliton solution cease to exist. In that case, a 
rapid aperiodic growth of the soliton amplitude creates a collapsing soliton structure 
up to the point when the amplitude reaches the critical value creating a cusp 
structure when we can no longer follow dynamic behaviour [25].  
 Initially launched stable moving solitons with parameters inside the 
stability region, but closer to the instability threshold, exhibit similar behavior, 
however, the level of the imposed perturbations that will lead to the soliton aperiodic 
growth, is much lower. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Spatio-temporal evolution of initially launched moving soliton, in the stable 
region λ=0.334, v=0.4, A0=0.6, P=2.73, for different perturbation levels. 
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Fig. 7. Typical dependence of the photon number P0(λ) for solitons with v=0.4, 
Pmax=4.45, λs=0.473. The stable soliton corresponds to the point P0=2.727, λ0=0.334. 
For the perturbation level ε1=0.1 the photon number is P1=3.3 and λ1=0.36 of the 
corresponding stable soliton (amplitude oscillations around λ1). For  ε2=0.2, 
P2=3.927 and λ2=0.39 of the corresponding stable soliton (amplitude oscillations 
around λ2). For ε3=0.3, the photon number is P3=4.61> Pmax and corresponding 
stable solution does not exist (soliton collapse-decay). 
 
 

5. SOLITON INTERACTIONS 
 
 The type of soliton interaction depends on the parameters (amplitude, 
phase, velocity) of the colliding solitons. We restrict our study to symmetric 
collisions of two solitons with equal amplitudes and opposite velocities 

vvv −== 21  v,  [26]. Direct numerical simulations of the model equation (1) 
show that interaction of the small amplitude solitons is always elastic one (Fig. 8a), 
without energy (momentum) exchange between colliding solitons. By increasing the 
soliton amplitude, the interaction remains elastic up to the point when the resulting 
amplitude of the interacting soliton complex reaches the value of cρ  and creates a 
highly unstable "cusp" -form structure. (Fig. 8b). Numerical simulations show a 
break up (annihilation) of the interacting pair. However, it is not possible to further 
follow chaotic dynamics due to the break up of the spectral numerical scheme 
(conservation loss for H and P). An introduction of the phase difference between the 
colliding soliton pair results in decreasing amplitude of the interacting complex and 
possible turn to the elastic type of interaction (Fig. 8c). Depending, whether during 
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impact, the soliton pair is in or out of phase, constructive or destructive interference 
of EM fields determines a fate of their interaction. Based on P-M-H interdependence 
future attempts to seek conservation laws for soliton interaction will be made. 
 
 

 
 
Fig.8. Interaction of two, in phase solitons with equal velocity v = 0:6 and different 
amplitudes a) 485.00 =ρ  and b) 6.00 =ρ ½0 = 0:6, and c) solitons with same 
parameters as (b) with phase difference πϕ = . The inserted plot illustrates the 
creation of the "cusp" structure. 
 
 

VI. CONCLUSIONS 
 
 In this work, moving 1D electromagnetic solitons, formed in a weakly 
relativistic laser plasma interaction, were studied in the framework of the envelope 
GNLS equation (4). Moving EM soliton solutions and corresponding soliton photon 
number (P) and Hamiltonian (H) were analytically derived in a closed form. The 
stability analysis shows that the weakly relativistic moving EM solitons are stable; 
with the stability region shifting toward larger amplitudes in comparison to the 
standing soliton case. Numerical simulations of the model equation (4) have 
confirmed our analytical results. Moreover, further studies of the dynamics of the 
perturbed solitons, shows that the imposed perturbations excite internal oscillation 
modes leading to the creation of the breather type of structures. A further increase of 
the perturbation level leads to a further deviation from the stable state and eventually 
to a rapid aperiodic growth of the amplitude toward the critical amplitude cρ , 
accompanied by a continuous change of the soliton profile toward a highly pointed 
and unstable structure of a cusp type. Due to the coincidental break up of the model 
equation (4) and our numerical scheme, we were unable to follow the dynamics of 
this structure further. This question deserves future attention because our 
considerations were restricted to a weakly relativistic regime; therefore, the future 
studies of the obtained large relativistic EM structures are possible with fully 
nonlinear fluid-Maxwell [15] and particle simulations [27], which are beyond the 
scope of this work. 
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