
Publ. Astron. Obs. Belgrade No. 84 (2008), 181 - 184 Contributed Paper

BACKSCATTERING OF FAST ELECTRONS FROM

SOLIDS WITHIN A MULTIPLE COLLISION MODEL

J. VUKANIĆ and D. M. DAVIDOVIĆ
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Abstract. Reflection of electrons from solids is treated by the approximate analytic solution
of the linearized transport equation. Scattering of electrons on target atoms is determined
by the screened Coulomb interaction and the energy loss due to interaction with target
electrons is defined by Bethe- Bloch formula. The anisotropic P3 approximation of the
collision integral is utilized and the Bolzmann transport equation is Laplace transformed in
relative path length and solved by applying the DP0 technique. The approach is applicable
in a wide range of electron energy –from several tens of keV to several MeV- and for materials
where the mean number of collisions of an electron with target atoms during slowing down
is large. Analytic expressions for energy distribution of backscattered electrons as well as for
the particle and energy reflection coefficients were derived. Comparison of our results with
data of the computational bipartition model is presented.

1. THE BASIC PHYSICAL MODEL

The scattering and slowing down of fast electrons penetrating a solid targe can be
desribed by the following expressions:

(a) The transport cross section for a screened Coulomb interaction between a fast
electron and target atom can be approximated by the modified Rutherford formula

σ1(T ) = 2π
Z(Z + 1)r2

e

T 2

(T + 1)2

(T + 2)2
L1(T ). (1)

with

L1(T ) ≈ L1(T0) = ln(1 +
1
η
)− 1

1 + η
. (2)

The screeing constant η is determined by the formula of Moliere (see Moliere 1947).
Furtermore, T = E/(m0c

2) is the kinetic energy of the electron expressed in units
m0c

2 = 510.7keV, Z is the atomic number of target atom, and re is the classic radius
of the electron. The cross section (1) incudes relativistic corrections and deflections
caused by inelastic collisions between electrons.
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(b) For energies E > 10keV , specific energy loss of primary electron caused by
interaction with target elecrons can be well described by Bethe- Bloch formula (see
Berger et al. 1982)

dT

dτ
= −NS(T ) = −N4πZr2

e

(T + 1)2

T (T + 2)
Lion(T ) (3)

where τ is the path length traveled, and the term Lion(T ) varies very slowly with the
energy and can be regarded as a constant i.e. Lion(T ) ≈ Lion(T0). Then, the total
path length has the form

τ0 =
1

4πNZr2
eLion(T0)

T 2
0

(1 + T0)
. (4)

We treat the case of fast electrons moving in a solid target when the total path length
τ0 is much greater than the transport mean free path λ1(E0) = [Nσ1(E0)]−1. The
dimensionless parameter ν

ν =
τ0(E0)
λ1(E0)

= Nσ1(E0)τ0 (5)

gives the mean number of wide angle collisions for the electron before slowing down
to rest. According to Eqs. (1), (4) and (5) the parameter ν becomes

ν =
Z + 1

2
1 + T0

(2 + T0)2
L1(T0)

Lion(T0)
(6)

Eq. (6) gives the mean number of large angle collisions of electrons penetrating
different targets, as a function of initial electron energy. It turns out that - except for
very light targets-electrons undergo several deflections before coming to rest.

2. SOLUTIONS OF ELECTRON TRANSPORT EQUATION

The basic simplifying assumption entering the model is that the large number of wide
angle deflections produce a nearly isotropic distribution of backscattered electrons.
This model of backscattering enabled us to use the convenient approximation of the
collision integral of the electron transport equation. We expanded the Laplace trans-
formed electron distribution function in series of double Legendre polynomials over
the angular variable. In the lowest order of approximation (DP0 method) we obtained
Laplace transformed reflection function.

The approximate solution is simple if one assumes inverse square scattering poten-
tial for the screened Coulomb interaction between a high energy electron and target
atom. Similar procedure was already successfully used for low energy ion reflection
from heavy targets(see Vukanić et al. 2001). The reason is that the situation ν >> 1
apears during penetration of low energy light ions through solids.

The scattering cross section can be approximated by the expression

dσ(T0, µ) =
1

2
√

2
σ1(T0)dµ̂

(1− µ)3/2
. (7)

Here, σ1(T0) is the transport cross section of the first order, determined by the formula
of Moliere , given by Eq. (1). By applying Laplace transform in relative path length,
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and utilizing further DPN method ,we have found the solution for the half space
reflection function in the lowest order of approximation (DP0 approximation) in form
of an exponential function.

3. RESULTS AND DISCUSSION

Applying Laplace inversion, we obtained the analytic expression for the path length
and angular distribution of backscattered electrons

R(µ0, µ, s) dµ ds =
hν√

π

µ

(νs + g)3/2
exp[− h2

4(νs + g)
] dµ ds (8)

with h = h(µ0) = 3.094 µ0 and g=g(µ0) = −1.72 + 14.44µ2
0 − 24.2µ4

0 + 11.48µ6
0

Thank to the simplicity of the expression (6) for R(µ0, µ, s), we obtained by simple
integrations over all exit directions and all possible path lengths the particle reflection
coefficient in the form

RN (µ0, ν) = erfc(
3.094µ0

2
√

ν + g
) (9)

One can see from Eq. (9) that the particle reflection coefficient appears to be a
universal function of the parameter ν which represent the mean number of wide-
angle collisions of the ion during slowing down. Fig. 1 shows the universal curve
RN (1, ν) for electrons incident normally on solid targets. Our results calculated from
Eq. (9) are compared with the data obtained from the computational bipartition
model (see Luo Zheng-Ming 1985). One can see that the reflection coefficient scales
with the characteristic parameter ν. The agreement of the present results with the
computational data is good.

Figure 1: Particle reflection coefficient for electrons incident normally on solid targets.
Our universal curve, calculated from Eq.(9) (solid line) is compared with computa-
tional data for different materials.
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Good agreement of our theoretical estimates for the particle reflection coefficient
with the result of computational bipartition model suggests that the obtained formulae
describe correctly the backscattering of fast electrons from solids.
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