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3Dipartimento di Fisica Universitá di Pisa, largo Pontecorvo 3, 56127 Pisa, Italy

E–mail: pegoraro@df.unipi.it

Abstract. A three-dimensional model for the warm-ion turbulence at the tokamak edge
plasma and in the scrape-off layer is proposed. It is based on the nonlinear interchange
mode, coupled with the nonlinear resistive drift mode, in the presence of the magnetic
curvature drive, the density inhomogeneity, the electron dynamics along the open magnetic
field lines, and the electron-ion and electron-neutral collisions. Numerical solutions indicate
the collapse of the blob in the lateral direction, followed by a clockwise rotation and radial
propagation. The symmetry breaking, caused both by the parallel resistivity and the finite
ion temperature, introduces a poloidal component in the plasma blob propagation, while the
overall stability properties and the speed are not affected qualitatively.

The transport in the scrape-off layer is mostly intermittent, due to the coherent
filamentary plasma structures, or ”blobs”. They are elongated along the magnetic
field and small (cm-sized) in the perpendicular direction, propagating radially with
a velocity in the thermal range. They are usually an order of magnitude, or more,
denser and hotter than the surrounding plasma. Blobs and SOL turbulence are usually
studied within the interchange paradigm, see the recent review (Krasheninnikov et al.,
2008). We include the effects of parallel electron dynamics and finite ion temperature,
using the standard hydrodynamic equations of continuity and momentum, in a purely
electrostatic regime. The collision frequency is below the ion gyrofrequency, and the
electron and ion dynamics are expressed in the drift aproximation. The equations are
further simplified for a weakly inhomogeneous tokamak magnetic field, ~B = B0(1 −
x/R)[~ez + (x/Ls)~ey − (z/R)~ex] where the coordinates x, y, and z correspond to the
radial, poloidal and toroidal distances. We consider electrons to be isothermal, and
alow for finite ion temperature, Ti ≤ Te. Finally, we assume a weak variation along
the magnetic field, ∇‖ ¿ ∇⊥, which allows us to neglect the nonlinear convection
along the magnetic field. Neglecting the polarization and finite Larmor radius effects,
the electron continuity equation, can be written as
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where we used ne = ni ≡ n, and we neglected the gradients of temperature, electron-
ion and electron-neutral collision frequencies across the SOL. γ

(sc)
α,n nn is the effective

frequency of the scattering collisions between the particle species α and the neutrals.
The particle source term γ

(ion)
e,n nenn comes from the electron impact ionization of the

neutrals. γe,i ne is the electron-ion collision frequency.
Subtracting the ion- and electron continuity equations, we obtain the ion vortic-

ity equation which in the Boussinesq approximation (we neglect the terms ∇⊥nα

compared to nα∇⊥) takes the form
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For the description of the parallel dynamics, we average the parallel momentum equa-
tions along the magnetic field. We seek an elongated, quasi 2-D solution that is tilted
by the angle θ relative to the toroidal axis (z axis), and whose projection on the toka-
mak cross-section (x, y plane) makes the angle ϑ with the radius (x axis), for which we
may write ∇‖ = ∂/∂z′ + tan θ ~p⊥(x) · ∇⊥, where ~p⊥(x) = ~ex cos ϑ +~ey(x/Ls + sin ϑ).
Neglecting the electron inertia, after the multiplication of the parallel electron mo-
mentum equation by ∇‖ and integration along the z axis from the wall (z = 0) to
z = L‖, where the average parallel velocity is equal to zero, we have

ve‖ (0) =
e/me

γe,i n + γ
(sc)
e,n nn

[(
∂

∂z′
+ 2 tan2 θ ~p⊥ · ∇⊥

)(
φ− Te

e
ln n

)
− γe,i n vi‖

]0

L‖

.

(3)
The electron velocity at the plasma-wall interface is determined from kinetic consid-
erations. When the magnetic field is perpendicular to the the wall, we have

ve‖ (z = 0) = n cs exp {(e/Te) [φ0 − φ (z = 0)]} , (4)

where cs is the acoustic velocity, cs = [(Te + Ti)/mi]
1
2 and φ0 is the unperturbed

plasma potential φ0 = φwall+(Te/e) ln{[Te/(Te + Ti)](mi/me

√
2π)}. The ion velocity

at the plasma-sheath boundary is found by the integration of the 1-D ion momentum
equation, since the sheath thickness is typically much smaller than the perpendicular
scale of turbulence. The sheath is a thin (Debye sized) layer, that is created at the
plasma-conducting wall interface, due to the different rates of escape of the electrons
and ions. When the magnetic field is perpendicular to the wall, we have vi‖ = cs.
Then, approximating the z-averaged flows by their local values, the divergence of the
parallel flows in Eqs. (1) and (2) can be written as
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(5)
and ∇‖vi‖ = cs/L‖, where φ̃ = φ−φ0 is the variation of the potential at a given point
from the background plasma potential φ0. In the rest of the text, for simplicity, tilde
will be omitted. Now, using above equations and appropriate normalizations, we can
rewrite our basic Eqs. (1) and (2) in a dimensionless form as

[
∂
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+ (~ez ×∇φ) · ∇

]
n−D∇2

⊥n = −σn, (6)
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Figure 1: a) The effect of the parallel electron dynamics. Collisional regime, with
cold ions and negligible perpendicular collisional effects. The parameters are χ2‖ = 1,
ϑ = 0, D = 10−3, χ0 = 2 × 10−3, χ2⊥ = χ4 = γ = σ = τ = 0. b) The effect of the
finite ion temperature in the inertial regime. We used D = 10−3, χ0 = 2 × 10−3,
χ2⊥ = χ2‖ = χ4 = γ = σ = 0, while τ = 1, 3 and 12 for the S, M, and L structures.
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The expressions for σ,D, χ0, χ2, χ4, and τ depend on our choice of the normalizations,
i.e. on the appropriate scaling laws. We can distinguish four different orderings with
respect to the intensities of various dissipation mechanisms, to the blob’s temporal
and spatial scales, and to the amplitude of electrostatic potential.
Inertial regime is realized when all dissipations can be neglected and, with the
accuracy to leading order, we have χ0 = χ2‖ = χ2⊥ = χ4 = σ = D = 0.
In the sheath resistivity regime the dominant dissipation mechanism is the cur-
rent loss to the wall, when we have χ0 = 1, χ2‖ = χ2⊥ = χ4 = σ = 0, τ =
τi (ν3
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Collisional regime is realized if the electron-ion and ion-neutral collisions are the
dominant dissipation mechanisms, when we have χ2‖ = 1, χ2⊥ = (νi,n/νRT )(ν‖/Ωi)
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Viscosity regime corresponds to χ4 = 1, χ0 = χ2‖ = χ2⊥ = σ = 0, τ = τi ρ2
sΩi/ηi,

and D = (De,i + De,n)/ηi.
Equations (6) and (7) are numerically solved in all above regimes. We used the

method of lines, with a finite difference discretization of the spatial variables x and y,
with 32×32 points. We set to zero the plasma source and sink, as well as the collision
frequency with the neutrals. The initial condition was adopted as φ (t = 0) = 0, and
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Figure 2: a) The effect of the finite ion temperature in the sheath connected regime,
in the vicinity of the wall of the vessel. We used D = 10−3, χ0 = 1, χ2⊥ = χ2‖ =
χ4 = γ = σ = 0, with τ = 1, 5 and 5 for the S, M, and XL structures. b) The effect of
the ion temperature in the sheath connected regime. We used D = 10−3, χ4 = 1,
χ2 = χ2⊥ = χ2‖ = γ = σ = 0, while τ = 2, 5, and 12 for the S, M, and L structures.

ni (t = 0) = niSOL
+nimax exp [−(x2 + y2)/L2

⊥], which corresponds to a Gaussian blob,
injected at t = 0, into a background SOL plasma whose density is niSOL . We studied
four characteristic blob sizes, labelled as S (Small, L⊥ = 0.5), M (Medium, L⊥ = 1.5),
L (Large, L⊥ = 4.5), and XL (eXtra Large, L⊥ = 8.5). The peak blob density was
taken five times larger than the background plasma density, nimax = 5 niSOL

. The
coupling with nonlinear drift modes introduces a fundamentally different behavior
compared to its 2-D counterparts (Jovanović et al., 2007). Due to the presence of
the resistive drift drive,the collapse of the oblique blobs in the lateral direction is
followed by a clockwise rotation and radial propagation, see Fig. 1 a). The finite ion
temperature effects in the inertial, sheath connected and viscous regime, are shown in
Figs. 1 a), 2 a) and 2 b), respectively. The symmetry breaking introduces a poloidal
component in the blob velocity, while its overall stability properties and the speed are
not affected qualitatively.
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