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Abstract. Ion acoustic wave in an inhomogeneous plasma naturally couples with a trans-
verse electromagnetic perturbations. Due to this coupling the ion acoustic mode becomes
electromagnetic. There appears a lower frequency cut off of the ion acoustic wave, the wave
becomes dispersive and backward.

1. INTRODUCTION

The model of electron-magnetohydrodynamics (EMHD) includes electron perturba-
tions on a background of immobile ions. Usually, the displacement current in the
Ampère law is neglected in this model, implying (ω/k)2 ¿ c2, where ω and k de-
note the wave parameters, and c denotes the speed of light. Moreover, in a plasma
containing only electrons and static ions, the perturbations are usually assumed to
be incompressible. This is formally seen by substituting the Ampère’s law (with-
out the displacement current µ0ε0∂ ~E/∂t) into the electron continuity equation. The
mentioned assumption of static ions implies electron perturbations that take place
at spatial scales at which the ions, due to their much larger inertia, are not able to
react, i.e., much below the ion skin depth λi ≡ c/ωpi, where ωpi is the ion plasma
frequency. This may formally be checked by making the ratio |ni~vi|/|ne~ve|, and by
further using the ion momentum equation and the Ampère law to express the ion and
electron velocities, and by applying the operator ∇× onto the resulting expression in
the numerator and denominator separately. This yields
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In the presence of an equilibrium density gradient, using the EMHD set of equations
together with an electron energy (temperature) equation, such perturbations describe
the generation of magnetic field in plasmas with sharp discontinuities (the magnetic
surface waves) Jones (1983), Yu and Stenflo (1985), or in weakly inhomogeneous plas-
mas Nycander et al. (1987). The magnetic field is generated due to the baroclinic
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vector ∇n0×∇Te1 (where Te1 is the electron temperature perturbation). This mecha-
nism was first suggested by Stamper and Tidman (1973), and is essentially an electron
dynamics effect.

In the present work we give an alternative approach to the problem of the generation
of magnetic field in plasmas. We shall show that when the ion perturbations are taken
into account (implying compressible perturbations), there appears a coupling between
the ion acoustic and electromagnetic perturbations. The coupling is entirely due to the
presence of small equilibrium density and temperature gradients. Note that here both
equilibrium gradients enter into the mode description only in order to have a properly
satisfied equilibrium. This means that the two gradient vectors are antiparallel.

2. DERIVATIONS AND RESULTS

To demonstrate the coupling we use a simple model with a minimum number of
equations forming a closed set. We start from the wave equation for the perturbed
EM field:

k2 ~E1 − ~k(~k · ~E1)− ω2

c2
~E1 − iω

c2ε0

~j = 0. (1)

Here, the perturbations are assumed to be of the form ∼ f(x) exp(−iωt + ikz). In
addition, we assume that the equilibrium plasma has small density and temperature
gradients along the x-axis. Therefore, a weak x-dependence of the wave amplitude is
considered along with the local approximation implying |∂/∂x| ¿ |k| = 2π/|λz|. The
perturbations are assumed to be isothermal (contrary to the usual EMHD theory)
and the ions are assumed to be cold. Having the density and temperature gradients
along the x-axis, we choose perturbations propagating in any perpendicular, e.g.,
z-direction. The properties of the medium enter Eq. (1) through the current ~j =
en0(x)(~vi1 − ~ve1).

The electron dynamics must include the momentum and continuity equations while
the ions are completely described by min0∂~vi1/∂t = en0

~E1. A static plasma equilib-
rium without macroscopic electromagnetic field is satisfied by

1
T0
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= − 1
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. (2)

The electron velocity is given by
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Here, ω2
0 = ω2 − k2v2

Te, v2
Te = κT0(x)/me, ∇n0 = ~exdn0/dx ≡ ~exn′0(x), ∇T0 =

−~exdT0/dx ≡ −~exT ′0(x). We have assumed a linear x-dependence of the two equilib-
rium quantities n0(x) and T0(x). Eq. (1) becomes
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k2 ~E1 − ~k(~k · ~E1)− ω2

c2
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The y-component of the vector equation (4) gives the transverse electromagnetic mode
which is not of interest here.

The z and x components are
(
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pev
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Eqs. (5) and (6) describe the coupling (due to the small density/temperature gra-
dients) between the longitudinal, Ez1, and the transverse electric field perturba-
tion, Ex1. They also determine the transverse, perturbed magnetic field component
By1 = kEx1/(iω). The dispersion equation reads:
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Here, ω1 ≡ ω/ωpe. Our interest here is the low frequency limit ω/ωpe ¿ 1, which
yields the mode frequency in the range of the ion sound wave:

ω2
EMIA =

k2c2
s

1 + k2λ2
d

[
1 +

mi

me

(
n′0
n0

)2 1
k2(1 + k2λ2

e)

]
. (8)

In the limit of small values of the wave number, there appears a lower frequency
cut off for the electromagnetic ion acoustic (EMIA) wave ω → ωc = κ2

nv2
Te, where

κn = n′0/n0. The group velocity of the electromagnetic ion acoustic mode (8) appears
proportional to

k4λ4
e − 2k2λ2

e(κ
2
nλ2

dmi/me − 1) + 1− κ2
nmi(λ2

e + λ2
d)/me.

The sign of this group velocity is thus determined by the wave-number, the equilibrium
density scale length, and the plasma parameters, so that we can have both a direct
and a backward wave. As seen from Eq. (8), for the wave-lengths much exceeding
the electron Debye radius, the mode may have a frequency which is above the ion
sound frequency. On the other hand, the second term in Eq. (8) describes a backward
mode. As a demonstration only, these properties are presented in Fig. 1 (Vranjes
et al. 2007) for the ion mass mi = 40 proton masses, for the electron temperature
T = 104 K, and taking κn = 1 m−1. We plot the EMIA mode for two values of the
number density, viz. n0 = 1017 m−3 (dashed line) and n0 = 1015 m−3 (full line).

505



J. VRANJES et al.

0 50 100 150 200
0

100

200

300

E
M

IA
 fr

eq
ue

nc
y

k

 ordinary IA
 n

0
=10^17 

 n
0
=10^15 

Figure 1: The electromagnetic ion sound frequency in units of κncs for the two number
densities n0 = 1017 m−3 (dashed line), and n0 = 1015 m−3 (full line) in terms of k
normalized to κn.

The frequency is normalized to κncs and the wave-number to κn. The dotted line
describes the ordinary ion sound normalized to the same units. From the full and
dashed lines it is seen that for small wave numbers it is a backward mode and very
much different from the ordinary ion sound wave.

The linear dispersion equation Eq. (8) describes an electromagnetic wave in un-
magnetized plasmas at the ion acoustic time scale, with the electromagnetic part
which is due to the electron pressure gradient. However, for the electromagnetic part
of the mode we do not need the electron temperature perturbation.
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