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Abstract. Models of stellar systems with spherical symmetry are considered. The attention
is paid to the behaviour of the second density derivative provided that the density, itself,
has a maximum at the centre to decrease outwards. In view of this the second derivative is
negative at the centre and two possibilities arise: & monotonous behaviour or a change ol
sign resulting in a positive second deunsity derivative w the outer parts ol the system.

1. INTRODUCTION

The spherical syrumetry is. certainly, the most simapie one. Though such an assuiaption
need not seem always sufficiently vealistic, there are stellar svsteins 1o which it is
applicable. The exatnples of srar clusters, some subsystems of spiral galaxies (bulges,
halos. perhaps, also dark coronae). as well as of elliptical galaxies, are well known,

In a recent paper of his (Ninkovié, 1998, hereafter referred to as Paper 1) the present
author carried out a general consideration ol stellar-system wodels with spherical
symmetry. In this consideration many particular models were nientioned. The density
dependence on radius was analysed, but with regard to its first derivative. However,
for the purpose of classifying the density models the behaviour of the second density
derivative may be also of tmportance. Therelore, in the preseut paper one will pay
more attention o the second derivative.

2. THE DENSITY BEHAVIOUR WITH RESPECT
TO THE SECOND DERIVATIVE

For stellar-system models the density and the pofential are, certainly, the two most
important quantities, 1. e. model characteristics. Since they are connected via Polsson’s
equation. i 1s possible to linut the consideration to the density only. In the case of
spherical synumetry it depends on one argument. only - radius or distance to the syster
centre. As already said above. the general dependence density-radins was subject
Paper I. Here it will be emnphasized that on the basis of gravitational instability one
should expect the density to he a decreasing radius function with a maximumn ai the
centre. This means that the second density derivative has to be negative al the centre.
Therefore, two possibilities arise: a monotonous behaviour without any change of sigu

or such a behaviour of the second density derivative where a change of sigi oceurs. In
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the former case the corresponding curve in the plot is said to be convex, in the latter
one to be partly convex and partly concave. In this connexion one can give some
examples, but before this another assumption will be introduced, i. e. the present
analysis will be limited to the cases of finite central densities only. Therefore, any
power density law (more precisely p(r) = Kr~°, K = const, b = const, 0 < b < 3),
though exceptionally simple, will be beyond the scope of the present contribution.

A density function of the polynomial type (e. g. Ninkovié, 1991) corresponds to a
convex plot. Bearing in mind the possibility of generalising the case considered in the
mentioned paper one can write

plr) = p0)(1 = Y 0i) (1)

p(r) is the density, r is the radius, r; is the limiting radius of the system at which
the density vanishes and «; are dimensionless coefficients subjected to the following
condition

ia; =0.
i=2

In view of the limiting radius definition the reason of introducing this condition is
self-evident.

On the other hand there are density functions of fractional type - for example the
generalised Schuster density law (e. g. Lohmann, 1964). For completeness the formula
of this density law will be also given here

P(I):(l—/_:_(ox)zvyﬂzo; (2)
z is the dimensionless radius - ¢ = r/r,, 7. = const. In this formula should be specified
another parameter - the limiting radius (r; or ; in dimensionless form). However, if 8
exceeds %—, it may be infinite with regard that the resulting total mass is, nevertheless,
_finite. :

It is easily seen that in both cases ((1) and (2)) the density is a decreasing radius
function. Also one should note the quadratic term concerning the radius appearing
in both formulae - i. e. in (1) the power of 7 is not smaller than 2. This occurs due
to the maximum required at the centre. In view of this the first density derivative
is negative except at the centre where it is zero. As for the second one, it is easily
seen that in the case of (1) it is always negative, including the centre, itself. On the
contrary, for expression (2) the second density derivative, though negative at the very
centre, changes its sign at a higher distance (inflexion point). Such a behaviour is
reflected in the corresponding figures. Fig. 1 gives the plot density versus radius for
formula (1); Fig. 2 presents the density dependence for the case of (2).

In addition to the generalised Schuster density law as an example of the density-
versus-radius curve with inflexion point, one might mention another density law also
belonging to the class of polytrope models (more extensively e. g. Ogorodnikov, 1958
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Fig. 1. Dependence density on radius according to (1) - n = 2; the desity unit is p(0).
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Fig. 2. Dependence density on radius according to (2) - § = %; the desity unit is p(0),
;= 3.

- p. 460); this is the case n = 1 (n polytrope index) where the density depends on the
radius 1n the following way

sin z

p(z) = p(0)

As in the case of (2) here z is also the dimensionless radius.

,0<e <.
z
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3. CONCLUSION

Thus, if the density functions without central singularities (for the case of spherical
symmetry) are accepted as realistic, then one may indicate two types of them accord-
ing to the density behaviour: those with an inflexion point and those without (density
has a maximum at the centre to be decreasing outwards). With regard to the results
of observations fitting one may infer that the former-type functions (with inflexion
point) have proved themselves as more successful. Therefore, the most important (and
still very preliminary) conclusion of the present analysis might be that in reality the
gravitational-instability mechanism (e. g. Marochnik and Suchkov, 1984 - p. 251) is in
favour of forming mass distributions characterised by a general density decreasing, a
density maximum at the centre and an inflexion point in the periphery. Of course, it
is clear that the steady state of a stellar system resulting in such a mass distribution
must be stable. This conclusion can be easily enough extended towards other kinds
of symmetry since in view of the geometry of equidensit surfaces the density can
be represented as a function of one variable where this variable is the characteristic
parameter of the given equidensit surfaces.
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