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Abstract. The Saitou-Takeuti-Tanaka one-zone stellar model is being extended by consid-
ering that the matter in the core-surrounding shell consists of a mixture of ideal gas and
radiation. The dynamical system describing the beliaviour of the shell is being tackled via a
bifurcation analysis of the equilibria of the corresponding linearized system.

1. BASIC EQUATIONS

Since their apparition the one-zone stellar models proved their ability to predict many
features of regular and irregular pulsating star light curves (see e.g. Baker 1966, Rudd
& Rosenberg 1970, Stellingwerf 1972, Auvergne et al. 1981, Auvergne & Baglin 1985,
Auvergne 1986, Stellingwerf et al. 1987, Saitou et al. 1989).

Consider a one-zone stellar model (Saitou et al. 1989) of mass M, featured by a
rigid core of constant radius R, and constant luminosity L., and by an envelope of
mass m,. Let the stellar radius (R > R.) be time-dependent. Furthermore, we shall
consider (e.g. Baker 1966) that the matter in the shell is a mixture of ideal gas and
radiation.

We shall resort to the following well-known equations of stellar structure (see Kip-
penhahn & Weigert 1991):

8%r/0t? = —4xr*(OP/Im) — Gm/r?, (1)
Aljdm = —cy (OT/0t) + (6/a)(P/p*) (Op/0t), (2)
I = [167m07?/(3xp)] (OT*/Or), (3)

namely motion equation, energy equation, and radiative energy transport equation in
the diffusion approximation, respectively. The notations are: m = mass of the sphere
of radius r, I = luminosity, P = pressure, T = temperature, p = density, cy =
specific heat at constant volume, k = opacity, ¢ = Stefan-Boltzmann constant, G =
Newtonian gravitational constant.
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The goal of our paper is twofold: to establish the equations which describe the
behaviour of the envelope in time, and to classify the equilibrium states with respect
to the interplay among the parameters of the model.

Like Saitou et al. (1989) we introduce the following relations referring to the core-
surrounding shell:

oP/dm = —P/m,, 0l/dm = (L — L.)/m,, OT*/0r=-T*/R, 4)

where P, L, T stand for the pressure, radiative energy flux and temperature in the
shell, respectively. Substituting (4) in (1)—(3), these ones turn to

O’R[0* = —4nR*P/m, — GM/R?, (5)
(L= Le)/ms = —cv (9T/0) + (8/a)(P/p*)(8p/01), (6)
L = 1670 RT*/(3xp). (7)

The hydrostatic equilibrium state implies Po/m, = GM/(4wR¢), the subscript
”(” corresponding to the equilibrium model with X = Xq, X € {R,L, P, T, p, x},
Lo = L.. As regards the properties of the stellar matter, we consider the following
formulae for the equation of state and opacity law, respectively:

p=pPT, (8)
K= K P*rTRT (9)
where pr and K are constants.

Let z and z be the relative variations of radius and pressure, respectively: B =
Ro(14 z), P = Py(1 + 2). We consequently derive

p=po(l+z)73

T = To(1 4+ 2)%%(1 4 )78,

Kk = Ko(l + l,)31c—p/6(1 +2)I€P+I¢T&/6,
L=Lo(1+ x)4(3+5—ﬂr)/6(1 + z)[d(‘*—ﬂr)-«’ﬂp]/é’

with po = 3M/(47R3), To = pi/Pp P P! ko = ke PEPTYT, and Lo =
16mo RoTy /(3k0po). With these relations, equations (5)-(7) lead to

=y, (10)
y=02 [(1+2)*(1+2) - (1+2)77], (11)
f= = (3/a)(1+ 2l 514 2) 7 [+ 20D 4 )y =1y = (12)
—e(6/a)(1+2)"¥*(1 4 z)t=e/s [(1 + ) GHImmnE(1 4 pylelEmmr)=bnrlfs _ 1] :
where Q = GM/R3, v = cp/cy, € = (§/a) Lo/ (msev Tp).
Note that in the case of a purely ideal gas shell we have « = 6§ = 1 (e.g. Kippen-

hahn & Weigert 1991). With these values, from equations (10)-(12) we retrieve those
established by Saitou et al. (1989, egs. (15a-c)).
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2. EQUILIBRIA OF THE LINEARIZED SYSTEM

Here we shall limit ourselves to the classical first step in investigating the behaviour
of a dynamical system: searching for the equilibria. This 1s a hard task in the case of
equations (10)-(12), so we shall resort to the analysis of the equilibria of the linearized
system. Linearizing (10)-(12), we get

=y (13)
y=4dz+ z (14)
z=Az+ By+Cz (15)

where A = —4e(3 4+ 6 — kr)/a, B = =3v/a, C = —¢[a(4d — k1) — 6kp] /r, and we
have chosen the units such that Q% = 1.
The corresponding characteristic equation reads

A~ CA = (B+4)) +(4C — A) = 0. (16)

We shall distinguish two main situations. The most general one is A # 4C. In this
case, the only equilibrium is the origin (z,y,2) = (0,0,0). It is easy enough to see
that this equilibrium 1s hyperbolic. This is of much help for our analysis, because
the local behaviour of the solutions of the linearized system in the neighbourhood
of hyperbolic equilibria is the same as for the nonlinear system (Hartman-Grobman
theorem). Taking into account (16), we easily see that the origin is a sink (stable
equilibrium) for C < 0, and a source (unstable equilibrium) for C' > 0. In case there
exist at least one root (16) with negative real part and at least one root of (16) with
positive real part, the equilibrium at the origin is a saddle.

A less probable case is A = 4C'. In this situation the equilibrium at origin is no
more hyperbolic, therefore we can say nothing about the behaviour of the solutions
of (10)-(12) in the neighbourhood of the origin. However, the fact that |z| and |z| are
much smaller than 1 makes us analyze this case, too.

Denoting ¢ = 4z + z, we reduce (13)-(15) to the two-dimensional system

¢=Cq+(4+ By, (17)
v=q (18)

If B = —4, the equilibrium (g,y) = (0,y.), with y. = constant, is stable for C' < 0,
and unstable for C' > 0. Let us focus on the case B # —4; the only corresponding
equilibrium is the origin (¢, y) = (0,0), too. We differentiate several situations.

If B < —4 — C?/4, the origin is a stable focus for C < 0, and an unstable focus for
C>0.

If -4 — C%/4 < B < —4, the origin is a stable node for C < 0, and an unstable
node for C' > 0.

If B > —4, the origin is a saddle.

Finally, if C = 0, the equilibrium at origin is stable (a centre) for B < —4, and
unstable for B > —4.
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Of course, this preliminary bifurcation analysis can be made go deeper by tackling
the whole possible interplay among the parameters A, B, C, especially for the most
probable case of the hyperbolic equilibrium. Such a hard investigation (given the
expression of A, B, C) will be done elsewhere.
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