Invited Lecture

BLACK HOLE MASS ESTIMATES FROM HIGH-IONIZATION LINES: BREAKING A TABOO?

P. Marziani¹, A. Del Olmo², M. L. Martínez-Aldama², D. Dultzin³, C. A. Negrete³, M. D'Onofrio⁴, E. Bon⁵ and N. Bon⁵

 ¹INAF, Osservatorio Astronomico di Padova, IT 35122, Padova, Italy
²Instituto de Astrofisica de Andalucía, IAA-CSIC, E-18008 Granada, Spain
³Instituto de Astronomía, UNAM, México D.F. 04510, Mexico
⁴Dipartimento di Fisica & Astronomia "Galileo Galilei", Università di Padova, Padova, Italy
⁵Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia E-mail: paola.marziani@oapd.inaf.it

Can high ionization lines such as C IV $\lambda 1549$ provide useful virial broadening estimators? The question has been dismissed by several workers as a rhetorical one because blue-shifted, non-virial emission associated with gas outflows is often prominent in C IV $\lambda 1549$ line profiles. Our analysis on a sample of ≈ 100 sources over a broad range of luminosity confirms that the line width of C IV $\lambda 1549$ is not immediately offering a virial broadening estimator equivalent to the width of low-ionization lines. However, capitalizing on the results of Coatman et al. 2016 and Sulentic et al. 2017, we suggest a correction to FWHM C IV $\lambda 1549$ for Eddington ratio and luminosity effects that can be applied over four dex in luminosity. Once corrected FWHM C IV $\lambda 1549$ are used, a C IV $\lambda 1549$ based scaling law yields black hole mass values with sample standard deviation ≈ 0.3 dex with respect to the ones based on H β .