Poster

THE H β LINE PROFILE ALONG THE QUASAR MAIN SEQUENCE

A. García Lopez^{1,2}, P. Marziani¹, M. D'Onofrio² and A. Del Olmo³

¹INAF, Osservatorio Astronomico di Padova, IT 35122, Padova, Italy ²Dipartimento di Fisica & Astronomia "Galileo Galilei", Università di Padova, Padova, Italy ³Instituto de Astrofisíca de Andalucía, IAA-CSIC, E-18008 Granada, Spain E-mail: paola.marziani@oapd.inaf.it

The quasar main sequence (MS) appears, at the very least, to be a useful tool to organize quasar diversity in large quasar samples. Several parameters are correlated with the MS defined in the optical plane FWHM (H β) versus Fe II prominence, also known as the optical plane of the 4D eigenvector 1 correlation space. The shape of the Balmer line H β shows a most intriguing behavior: the ratio FWHM over radial velocity dispersion σ is changing along the sequence. Previous work has shown that profiles are usually well fit by a Lorentz function if FWHM (H β) is \leq 4000 km/s (Population A following Sulentic et al. 2000): by a double Gaussian if the lines are broader (Population B). Here we present the preliminary results of a systematic study of the H β line profile in bins of 1000 km/s, over four intervals in Fe II prominence (defined by the intensity ratio $R_{\rm Fe II}$ between the Fe II blend at λ 4570 Å and H β). In particular we test which model of the broad H β line profile among a Lorentz, a double Gaussian, and a Voigt function provides the best description of the line profile as a function of line width and $R_{\rm Fe II}$. Some implication are drawn on the dynamics and geometry of the broad line region.