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Abstract.  This paper is concerned with the possibility of determination the basic plasma parameters 
such as temperature and electron density by using advanced numerical procedure for deconvolution of 
theoretical asymmetric convolution integral of a Gaussian and a plasma broadened spectral line 
profile jA,R(λ) for spectral lines. Special attention was dedicated to reliability of obtained parameters. 
The methods for verifying the validity of the theory predicted model function with real plasma 
conditions and for detecting the presence of other undesirable broadening mechanisms are given. The 
comparison with plasma parameters determined by using standard diagnostics methods is also 
presented.  
 
 

1. INTRODUCTION 
 
The investigation of broadening of the spectral lines through different plasma parameters, 
which represent physical conditions and state of plasmas, helps us to understand physical 
mechanisms leading to it. Theoretical knowledge of physical mechanisms of broadening 
based on plasma parameters, can be used for determining physical conditions and state of 
plasmas by analyzing the shapes of atomic spectral lines. That approach can be useful for 
determining parameters for laboratory plasmas as an independent method, but this is 
especially true in case of astrophysical plasmas. In fact, the only way of performing 
diagnostic of astrophysical plasmas is the investigation of their radiation (spectral lines and 
continuum). The investigation of the spectral line shapes and parameters is very important 
because most of the information about celestial objects is acquired in that way.  

In principle three different agents may contribute to the final width and shape of a 
spectral line: natural broadening, Doppler broadening and interactions with neighboring 
particles (Griem, 1968, 1974, 1997). The natural broadening is usually very small 
compared to the other contributions and has the well-known Lorentzian or dispersion 
distribution. Doppler broadening originates from the statistical velocity distribution of the 
emitting atoms, being directly dependent upon the plasma temperature. In the case of 
Maxwell distribution of velocity the Doppler broadening has a Gaussian distribution. The 
third mechanism depends on the electric micro-fields of neighboring particles and includes 
Stark, Van der Waals and resonant broadenings. This mechanism becomes important with 
the increase of the pressure and represents the so-called pressure broadening. The profile 
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representing this broadening, in the cases when interactions between the emitter and ion is 
negligible in comparison with the interaction emitter electron, is a symmetric Lorentz 
function. For neutral and ionized emitters for which the interaction between emitter and ion 
is not negligible, more convenient distribution is asymmetric jA,R(λ) profile (Griem, 1974). 
In the case of neutral atoms, an important role may play the resonant and Van der Waals 
broadening and it should at least be estimated. This requires some independent 
measurements or estimation of neutral atom densities, in addition to the usual 
measurements of electron density and electron temperature. 

One additional effect of the line broadening in plasma has to account for the radiative 
transfer. The lines may be broadened by self-absorption and this effect is especially 
important in the cases of strong lines and high pressures. Self-absorption will have the 
effect of destroying and especially broadening the lines and will therefore produce an 
apparently large width. In some cases, in conditions of inverse population, if induced 
(stimulated) emission exceeds the absorption, it may even cause line narrowing. This 
radiation additionally influences the shape of the line profile. There is also a contribution of 
instrumental broadening, which is characteristic of spectral device used for observation, and 
it must be known and taken into account appropriately.  

Most measurements have been concerned with isolated lines of neutral atoms and of 
ions in low and intermediate charge states for a large number of elements. Besides, there is 
also a great need for reasonably accurate measurements under the well-defined plasma 
conditions. For most of these measured lines, the electron impact broadening should indeed 
be the dominant mechanism, except for very partially ionized gases. The state of the art in 
impact line broadening theory today is well represented by the convergence of fully 
quantum mechanical and semiclassical calculations. This situation is well described in a 
number of papers dealing with impact broadening, (Alexiou, 1995, 1997, 2000; Griem and 
Ralchenko, 2000). 

All the mentioned processes exert influence on the shape of the spectral lines. Usually, 
it is resonable to presume Doppler and Stark broadening (or any other kind of pressure 
broadening), as being statistically independent processes. In this case the electron collision 
is irrelevant regarding the Doppler broadening, but it is so important for pressure 
broadening. Corresponding profile contributions can be separately convolved to obtain the 
total shape of the line. In order to analyze the experimental data the first step is the fit to 
Lorentzian profile. The fit to Voigt profile is more appropriate, because it includes Doppler 
broadening in the main Lorentzian profile. This profile can be used if the shape of the 
measured line is symmetric, which is the case of ionized emitters, where it is possibly to 
neglect the  interactions between the emitter and perturbation partical - ion. In the case of 
neutral and ionized emitters for which the interaction between the emitter and ion is not 
negligible, the line profile is asymmetric. In principle there is no fundamental difference 
between the ionized emitters. However, the quasistatic approximation is better satisfied for 
singly than multiply ionized emitters within a given isoelectronic sequence because the 
relevant energy spacings are smaller and the times contributing to the relevant integrals are 
longer (Alexiou, 1994). The most convenient fit in these cases is the fit to the so-called "K" 
function i.e. the convolution integral (Griem, 1974) of a Gaussian and a plasma broadened 
spectral line profile jA,R(λ). Besides the jA,R(λ) and Doppler widths, the important role in 
"K" profile is played by the static ion broadening parameter A and Debye shielding and 
ion-ion correlation parameter R.  

It should be mentioned that besides the quasistatic treatment of ions there is also the 
dynamic treatment of the ions (Griem, 1974; Barnard et al., 1974) existing. If strong 
collisions do not overlap in time, the theory is valid for the whole range of ion broadenings, 
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from quasistatic to impact broadening. In this way, two situations are possible. First, 
quasistatic and dynamic ion treatment at the same time, in this case the resulting line pofil 
is asymmetric. Also, in this case it is possible the distinguish electron impact width and ion 
width. Second, if ions are not quasistatic (Alexiou, 1996, 1997; Oks, 1999), there is always 
a part of ion width which just adds to the electron impact width, and in this case the 
resulting line pofil is symmetric function. Experimentally, in this case, one cannot 
distinguish between the electronic and ionic impact contributions, and care must be taken at 
interpreting the line broadening parameters.  

In the above text the asymmetry of the lines refers to a quasistatic broadening, 
consequently the approach ignores a number of important factors which too may contribute 
to the asymmetry of the lines, such as the gradients, quadrupoles, shifts or some other 
effects.  

When the experimentalist gets a line without an apriori knowledge of the plasma 
parameters, he would like to be able to separate them from  the experimental spectrum. 
Most measurements have been concerned with isolated lines of neutral atoms and of ions in 
low and intermediate charge states for a large number of elements. In the case of neutral 
and ionized emitters for which broadening by ions are not negligible, the line profile is 
often asymmetric. The most appropriate theoretical model function in these cases is the K 
profile (2), i.e., the convolution integral of a Gaussian and a plasma broadened spectral line 
profile jA,R(λ).  
 
 

2. THEORETICAL BACKGROUND 
 
In the general case of non-hydrogenic atomic lines the ion broadening in most cases is not 
negligible and the line profiles are described by an asymmetric function. In the quasistatic 
ion approximation (Griem, 1974) the profile of an isolated spectral line emitted by a non-
hydrogenic emitter is given by 
 
 
 
       (1) 
 
 
where jo is the baseline, jmax maximum intensity, HR(β) an electric micro field strength 
distribution function of normalized field strength  β=F/Fo. Fo is the Holtsmark field 
strength. A(α=A4/3) is the static ion broadening parameter as a measure of the relative 
importance of ion and electron broadenings. R is the ratio of the mean distance between 
ions to the Debye radius, i.e. the Debye shielding parameter and Wj is the width (FWHM) 
of the j profile. Electric micro field distributions in plasmas have been calculated by Hooper 
(1966, 1968).  

Whenever the Gaussian contribution of plasma broadening is not negligible one 
has to use a deconvolution procedure to determine the Stark  width of the line. The 
convolution integral of both Gaussian and Stark broadening jA,R(λ) profiles is given by 
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where K0 is the baseline, Kmax the maximum intensity, and HR(β) an electric microfield 
strength distribution function (Hooper, 1966, 1968) of normalized field strength β=F/F0. F0 
is the Holtsmark field strength. A (α=A4/3), the static ion broadening parameter is a measure 
of the relative importance of ion and electron broadenings and is given by Griem (1974). R 
is the ratio of the mean distance between ions to the Debye radius, i.e., the Debye shielding 
parameter and Wj is the width (FWHM) of the j profile. λ0 is actual position of the center of 
a line. 
 
 

3. NUMERICAL PROCEDURE 
 
The proposed function for various line shapes (2), is of the integral form and includes 
several parameters. Some of these parameters can be determined in separate experiments, 
but not all of them. Furthermore, it is impossible to find an analytical solution for the 
integrals and methods of numerical integration to be applied. This procedure, combined 
with the simultaneous fitting of several free parameters, causes the deconvolution to be 
extremely difficult task and requires a number of computer supported mathematical 
techniques. Particular problems are the questions of convergence and reliability of 
deconvolution procedure, which are tightly connected with the quality of experimental data. 

For the purpose of deconvolution iteration process we need to know the value of K 
function as a function of λ for every group of parameters (Kmax, λo, Wj, WG, R, A). The 
function K(λ) is in integral form and we have to solve a triple integral in each step of 
iteration process of varying the above group of parameters. The first integral in the "K" 
function is the micro field strength distribution function HR(β), the second one is the jA,R(λ) 
function and the third is the convolution integral of a Gaussian and a plasma broadened 
spectral line profile jA,R(λ), denoted by K(λ) - equation (2). All these integrals have no 
analytic solution and must be solved using the numerical integration.  
        The most difficult integral to deal with is the micro field strength distribution function, 
because this is a multidimensional integral. Straightforward manner would be the estimates 
of multidimensional integral by Monte Carlo method of integration. The numbers of 
random samples of points must be large in order to achieve satisfactory accuracy. That 
could be achieved at the cost in increased processor time. These reasons eliminate the 
Monte Carlo method of integration. The same reasons eliminate the Monte Carlo simulation 
method too. There are many theories developed for evaluating the micro field strength 
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distribution function. The best known are Holtsmark (1919), Baranger and Mozer (1959) 
and Hooper (1966, 1968) theories. Also developed was the phenomenological adjustable-
parameter exponential method (APEX) (Iglesias, 1983, 1985), whose efficiency was 
demostrated by excellent agreement with computer simulations. The numerical evaluating 
of micro field strenght distribution function, as a function of β and R, in each step of 
iteration process, would impose a long processor time, and the method would be practically 
inapplicable. Instead, we have decided to solve the integral equation of micro field 
distribution in sufficient numbers of points (β, R), and after that we interpolated that two-
dimensional surface by polynomial interpolation. In every iteration step, at varying 
parameters β, or R, we used previously hand determined interpolation polynomials for 
determining the value of micro field strength distribution in current points. For neutral and 
singly ionized atoms (emitters) there exists the tabular date-base in Hooper (1966, 1968). It 
should be noted, that this deconvolution procedure may involve any method of calculation 
of micro field strength distribution function depending on the kind and composition of 
analyzed plasmas. 

The second integral in (2) is the jA,R(λ) and it is evaluated by summation method. 
The third integral is evaluted by the Gauss-Hermite method with exp(-t2) as a weight 
function. In this manner the number of terms in the numerical sum is reduced in 
comparation with the summation methods. It must be noted, that in cases where 
(WG>0.5Wj) in (2) which are frequent physical situations in astrophysical plasmas (Popović 
et al., 1999), this method of integration is not applicable. Then, the integration must be 
performed by clasical summation methods, which greatly slow down the iteration process, 
but these methods are the only correct, in these regions. 

In general, the base line  Ko in function (2) is a function of wavelength. In many 
cases it is nearly constant, or linear function, but in some cases it may have more complex 
dependence (Glenzer et al., 1992). We have included in our procedure the fitting of 
background by cubic polinomial, as independent step, in order to prepare experimental data 
for the main deconvolution procedure.In this way, we have solved the equation (2) and now 
we can start with fitting procedure itself. For the equation (2), the fitting procedure will 
give the values for WG, Wj, λo, R, A and Kmax.  

We are using the standard manner of defining the best fit: the sum of the squares 
of the deviations (Chi-Square) of the theoretical function from the experimental points is at 
its minimum. In other words, we are seeking the global minimum of the Chi-Square 
function which is hyper-surface of N dimensions in a hyperspace of N+1 dimensions, 
where N is equal to a number of parameters for appropriate theoretical function. N is equal 
to six for the "K" profile (Milosavljević and Poparić, 2001). 

The necessary condition for the minimum of Chi-Square sum is that the partial 
derivatives of the function are equal to zero. Therefore, in the case of "K" profile we have a 
system of six nonlinear homogeneous equations with six parameters.. We are seeking the 
numerical solutions of these systems by using the well-known Newton method of 
successive approximations. Ostrowski and Kantorovich (Demidovich, 1987) have 
investigated the conditions of convergence of Newton method. In these cases we have two 
homogenous systems of algebraic and transcendental equations with real coefficients. The 
functions are defined and continuous, along with its partial derivatives of first and second 
orders. If the initial parameters lie in the domain sufficiently close to the expected solutions 
of the system, the conditions for convergence are fulfilled.  

The seeking for the numerical solution of this problem by employing computer is 
accompanied by a number of numerical difficulties. The Newtons method requires 
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successive solving of the inverse Jacobi matrices of the system of equations for each step, 
which are error prone due to the errors of rounding. Moreover, the numerical partial 
derivatives in Jacobi matrix itself are sources of errors of rounding. These errors of 
rounding are destabilizing the convergence of solution of the system, although the all-
mathematical conditions are fulfilled. The stabilization of iterative process may be achieved 
by weighting the non-diagonal elements of inverse Jacobi matrix by real numbers in the 
domain (0, 1] (Milosavljević and Poparić, 2001). We introduce the dynamic weighting of 
the off-diagonal Jacobian elements in the domain of (0,1]. During the iterative process, if 
the convergence of process becomes unstable, they are automatically adjusted by 
decreasing toward zero. The conditions of positive-definiteness of the weighted Jacobian 
matrix are always achieved by decreasing off-diagonal dynamic weighting parameters. For 
sufficiently small off-diagonal weighting parameters the weighted Jacobian matrix becomes 
diagonally dominant and positive-definite. The algorithm dynamically decreases weighting 
parameters until the condition for positive-definiteness is fulfilled. Also, when the 
convergence of process is stable, they can be increased in order to accelerate process. They 
are adjusted dynamically during the minimizing process. They are not fixed. In that 
manner, the stability of iterative process is achieved. So, our deconvolution method meets 
the condition of positive-definiteness and has no problems with stability and reproducibility 
(Milosavljević and Poparić, 2003). These modifications of Newton’s method do not affect 
the conditions of convergence and uniqueness of mathematical solution, but do affect 
somewhat the speed of convergence. In this way we have contrived to give numerical 
solutions for fitting functions with more than three free parameters, which is difficult for 
non-polynomial fits.  

This algorithm has shown a great stability in numerical sense, under variation of 
initial parameters. This has been demonstrated by fitting of about one hundred of 
experimental data sets, for "K" profile. 

This sophisticated deconvolution method, which allows direct determining of all 
six parameters by fitting theoretical K-profile (2), on experimental data, requires sufficient 
number of experimental points per line, and small statistical errors. The upper limits of 
numerical conditionality of this method are a minimum twenty experimental points per line 
(the border of line is (-3/2Wj+λo<λ<+3/2Wj+λo), where Wj (FWHM), and maximal 
statistical indeterminacy in intensity is 5% at every experimental point. Poor experimental 
measurements weaken the conditionality of the system of equations, and lead to non-
applicability of this method. This has been concluded by testing the sensitivity of the 
algorithm by generating random statistical noise with Gaussian distribution in every point 
involved by theoretical profiles. 
 
 

4. PROBLEMS OF  RELIABILITY OF OBTAINED PARAMETERS 
 
The theoretically proposed model function for various line shapes Eq. (2), is of the integral 
form and includes several parameters. Some of these parameters can be determined in 
separate experiments, but not all of them. If one has experimentally obtained spectra, in 
principle one cans determine parameters which included in model function by solving the 
inverse problem. Because of complexity of theoretical model function and its integral form 
various numerical methods have to be used. In order to solve the inverse problem we are 
looking for the best fit or for parameters when the sum of the squares of the deviations of 
the theoretical function from the experimental point is at its minimum. In this minimization 
we vary through six-dimensional parameter space (Kmax, λ0, Wj, WG, R, A). Actually, we 
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are seeking for the global minimum of the chi-square function, which is the hyper surface 
of N dimensions in a hyperspace of N+1 dimensions, where N is equal to a number of 
parameters for the appropriate theoretical function. N is equal to six in the case of the K 
profile. The advanced numerical method which enables the determination of all of six 
parameters proposed by theory model function was developed and presented by 
Milosavljević and Poparić (2001).  

A great number of parameters and the complex topology of the hyper surface of 
the chi-square function, as a function of parameters, through the numerical method finds the 
global minimum, naturally intrude the question of reliability of such obtained parameters. A 
special problem is statistical noise, which leads to forming local minimums in the hyper 
surface of the chi-square function and its more complex topology. This problem can be 
overcome by determination of a confidence region for every concrete case. There are well-
known methods for this kind of estimations (Press et al., 1995).  

The next problem is the cases when there is possibility of presence of other 
broadening mechanisms, such as radiative transfer, reabsorbtion, turbulence, ion dynamics 
and other broadening mechanism which are not included in theoretical model function. The 
parameters obtained by solving inverse problem in those cases do not have physical sense. 
A special care had to be dedicated to detection of these undesirable effects. There are 
methods for quantitative checking if some theoretical proposed model function 
appropriately fits some experimental data. Testing can be performed by estimation of 
convergence of the chi-square sum during decreasing the statistical noise. Non-zero limes 
value would show that proposed theoretical model function does not well describe the 
physical process, e.g. there is a presence of some additional effects, which had not been 
included in modeling. 

Also, another testing can be performed by comparing of estimated mean value of chi-
square sum and actual chi-square sum obtained from experimental set of data, at the same 
statistical noise level. So, it always can retrieve the presence of additional undesirable 
effects. Moreover, its magnitude can be estimated. Deconvolution procedure (Milosavljević 
and Poparić, 2001) does not enable to eliminate undesirable effects such as reabsorption, 
radiative transfer, ion dynamic (e.g. falling of quasistatic approximation), and other 
broadening mechanisms, but it is very important that their presence can always be 
discovered. If these effects are not negligible, the estimated parameters would not have a 
sense. But it is important that these effects can always be quantitatively detected and their 
importance can be quantitatively estimated by comparing with statistical noise level. In the 
cases where they are not negligible, additional diagnostic and modeling are needed. 
  
 

5. APLLICATION AND COMPARISONS WITH STANDARD DIAGNOSTICS 
METHODS  

 
The plasma parameters were determined using standard diagnostics methods. Thus, the 
electron temperature was determined from the ratios of the relative line intensities of  
spectral lines helium, argon and krypton, respectively  with an estimated error of ±10%, 
assuming the existence of the LTE. The electron density decay was measured using a well-
known single wavelength He-Ne laser interferometer technique for the 632.8 nm transition 
with an estimated error of ±9%. Temporal evolution of electron temperatures and electron  
densities are presented in Figs. (1-3). 
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Fig. 1: Electron temperature (T) and density (N) decays for He I 706.52 nm. Full lines 
represent measured data using independent experimental techniques and dashed lines 
represent plasma parameters obtained using our line deconvolution procedure in various 
plasmas (Milosavljevic and Djeniže, 2003a). Error bars, indicated only in the case of the 
greatest disagreement (T in b3), represent estimated accuracies of the measurements (±10%) 
and deconvolutions (±12%) 
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Fig. 2: Electron temperature (T) and density (N) decays for 5 lines of Ar I. Full lines 
represent measured data using independent experimental techniques and dashed lines 
represent plasma parameters obtained using our line deconvolution procedure in various 
plasmas (Milosavljevic and Djeniže, 2003b). Error bars, indicated only in the case of the 
greatest disagreement, represent estimated accuracies of the measurements (±10%) and 
deconvolutions (±12%) 
 

 
 

Fig. 3: Electron temperature (T) and density (N) decays for 20 lines of Kr I. Full lines 
represent measured data using independent experimental techniques and dashed lines 
represent plasma parameters obtained using our line deconvolution procedure in various 
plasmas  (Milosavljevic et al., 2003). Error bars, indicated only in the case of the greatest 
disagreement, represent estimated accuracies of the measurements (±10%) and 
deconvolutions (±12%). 
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 As can be seen from Figs. (1-3) there is a good agreement between the plasma 
parameters which were determined using standard diagnostics methods and parameters 
obtained by deconvolution method over a wide range of temperature and electron density. It  
shows first that, the proposed model function well describes the broadening of spectral lines 
over this range of plasma parameters, and second, that the deconvolution procedure is 
numerically stable and gives reliable plasma parameters.  
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