

Observations of HCN hyperfine line anomalies towards low and high mass star-forming cores

by Dr. Robert Loughnane

In collaboration with Dr. Matt Redman, Dr. Nadia Lo, Professor Maria Cunningham, Dr. Mark Thompson, and Brendan O' Dwyer

8th Serbian Conference on Spectral Line Shapes in Astrophysics

Overview of Presentation

- Observing Molecular Cloud Cores
- Molecular line observations
- The HCN molecule
- Anomalous hyperfine spectrum
- Preliminary results
- Conclusions
- Future Aims

Observing molecular cloud cores

- Stars form inside cold (~10 K) dense (~10⁴-10⁶ cm⁻³) dusty 'cores' in molecular clouds
- These cores are highly obscured so need to observe in mm or sub-mm regimes
- Continuum observations detect the dust emission
- Line observations (from gas phase molecules or ions) trace the gas and its dynamics

Molecular Line Observations

optically opaque – observed within alternative part of spectrum, sub-mm or mm λ

e.g. HCN J=1-0 @ 0.338mm HCO⁺ J=1-0 @ 0.342mm

[Left: http://www.kasi.re.kr/english/e_div/div 02.Php and Right: www.paulruffle.com/... /high/DSCN0041.600x600.jpg]

Hydrogen Cyanide - advantages

Polar molecule
 High Ē-dipole moment
 High molecular abundance
 Lower rotational transitions are strong emitters in the sub-mm

Hyperfine Structure

Shift due to complex interactions involving nucleus and e⁻ cloud

Hydrogen Cyanide -disadvantages

>HCN observations of sources thwarted by anomalies Non-local/Local effects contribute to an overlapping of higher transitions Study of mechanism left dormant

Anomalous Hyperfine Structure

8th Serbian Conference on Spectral Line Shapes in Astrophysics

	$T^{*}_{A}(J,F=1,2\rightarrow0,1)$	$\int T_A^* \Delta v, \; \mathrm{J}{=}1{\rightarrow}0 \; (\mathrm{Kkms}^{-1})$			$T^*_{\star}(J,F=3,4\rightarrow2,3)$	$\int T_A^* \Delta v$, J=3 $\rightarrow 2$ (Kkms ⁻¹)		
SOURCE	(K)	$F=0\rightarrow 1$	$F=2\rightarrow 1$	$F=1\rightarrow 1$	(K)	$\Delta F = 0^-$	$\Delta F = 1$	$\Delta F = 0^+$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
L1498	1.00	0.171 ± 0.014	0.175 ± 0.014	0.147 ± 0.012	0.35	0.017 ± 0.000	$0.140 {\pm} 0.003$	$0.101 {\pm} 0.002$
L1495AN	0.65	0.218 ± 0.017	0.305 ± 0.024	0.184 ± 0.015	0.18	0.020 ± 0.000	0.165 ± 0.003	$0.137 {\pm} 0.003$
L1521B	0.36	0.185 ± 0.015	0.224 ± 0.018	0.196 ± 0.016	0.17	0.015 ± 0.000	0.084 ± 0.002	0.092 ± 0.002
B217-2	1.09	0.336 ± 0.027	0.495 ± 0.040	0.306 ± 0.024	0.23	0.046 ± 0.001	0.179 ± 0.004	0.074 ± 0.001
L1521F	0.73	0.272 ± 0.022	0.296 ± 0.024	0.237 ± 0.019	0.71	0.046 ± 0.001	0.253 ± 0.005	$0.155 {\pm} 0.003$
TMC-2	1.50	0.234 ± 0.019	0.518 ± 0.041	0.332 ± 0.027	0.25	0.053 ± 0.001	0.172 ± 0.003	0.118 ± 0.002
CB22	0.77	0.150 ± 0.012	0.259 ± 0.021	0.157 ± 0.013	0.13	0.012 ± 0.000	0.072 ± 0.001	0.013 ± 0.000
TMC-1	1.08	0.390 ± 0.031	0.355 ± 0.028	0.304 ± 0.024	0.20	0.023 ± 0.000	0.104 ± 0.002	0.075 ± 0.002
L1527B-1	0.57	0.260 ± 0.021	0.240 ± 0.019	0.180 ± 0.014	0.26	0.066 ± 0.001	$0.185 {\pm} 0.004$	0.111 ± 0.002
CB23	0.78	0.122 ± 0.010	0.198 ± 0.016	0.124 ± 0.010	0.09	0.002 ± 0.000	0.049 ± 0.001	0.068 ± 0.001
L1507A	0.74	0.190 ± 0.015	0.224 ± 0.018	0.139 ± 0.011	0.12	0.039 ± 0.001	0.127 ± 0.002	0.041 ± 0.001
L1517B	0.67	0.167 ± 0.013	0.237 ± 0.019	0.124 ± 0.010	0.24	0.009 ± 0.000	0.090 ± 0.002	0.053 ± 0.001
L1544	1.27	0.305 ± 0.024	0.258 ± 0.021	0.275 ± 0.022	0.57	0.063 ± 0.001	0.225 ± 0.004	$0.176 {\pm} 0.003$
L1517B L1544	0.67 1.27	0.167 ± 0.013 0.305 ± 0.024	0.237 ± 0.019 0.258 ± 0.021	0.124 ± 0.010 0.275 ± 0.022	0.24 0.57	0.009 ± 0.000 0.063 ± 0.001	0.090 ± 0.002 0.225 ± 0.004	0.053 ± 0.001 0.176 ± 0.003

Optically	thin,	LTE	conditions	\Rightarrow
-----------	-------	-----	------------	---------------

J=1→0
$$R_{02} \sim 0.2$$

 $R_{12} \sim 0.6$
J=3→2 $R_{0^{-}1} \sim 0.04$
 $R_{0^{+}1} \sim 0.04$

Sohn et al. 2007 Loughnane et al. 2011

SOUDCE	J=1	.→0	$J=3\rightarrow 2$		
SOURCE	R_{02}	R_{12}	R_{0-1}^{a}	R_{0+1}^{a}	
L1498	0.9771	0.8400	0.1214	0.7214	
L1495AN	0.7148	0.6033	0.1212	0.8303	
L1521B	0.8259	0.8750	0.1786	1.0952	
B217-2	0.6788	0.6182	0.2570	0.4134	
L1521F	0.9189	0.8007	0.1818	0.6126	
TMC-2	0.4517	0.6409	0.3081	0.6860	
CB22	0.5792	0.6062	0.1667	0.1806	
TMC-1	1.0986	0.8563	0.2212	0.7212	
L1527B-1	1.0833	0.7500	0.3568	0.6000	
CB23	0.6162	0.6263	0.0408	1.3878	
L1507A	0.8482	0.6205	0.3071	0.3228	
L1517B	0.7046	0.5232	0.1000	0.5889	
L1544	1.1822	1.0659	0.2800	0.7822	

High Mass HCN J=1-0 Hyperfine Analysis

$$\mathbf{y}(\mathbf{x}) = \mathbf{A} \exp\left(-0.5 \left[\frac{\mathbf{v} - \mathbf{c}}{\sigma}\right]^2\right)$$

$$(\sigma_2^2 - \sigma_1^2)\mathbf{v}^2 + 2(\sigma_1^2\mathbf{c}_2 - \sigma_2^2\mathbf{c}_1)\mathbf{v} - \left[2\sigma_1^2\sigma_2^2\ln\left(\frac{A_1}{A_2}\right) + \sigma_1^2c_2^2 - \sigma_2^2c_1^2\right] = 0$$

8th Serbian Conference on Spectral Line Shapes in Astrophysics

-55 Velocity (km s*')

-55 -50 Velocity (km s*') HCN J=1-0

-45

HCN J=1-0

-50

-40

-45

7 individual positions towards G333 Molecular Cloud (RCW 106)

Loughnane et al. (2011)

Results:

- Low mass
 Cores spread
 out over
 large region
- Massive Cores confined to smaller region

8th Serbian Conference on Spectral Line Shapes in Astrophysics

Low Mass Cores:

Investigated variation of the degree of anomaly with line-of-sight density

 $\frac{\text{NOTE:}}{R_{12} = R(I(F=1-1)/I(F=2-1))}$ R₀₂ = R(I(F=0-1)/I(F=2-1))

Hyperfine Ratios, R₀₂/R₁₂

Conclusions

- (i) HCN is highly useful molecule in tracing high density material
- (ii) High quadrupole moment results in large spacing between hyperfine components
- (iii) Anomalies devalue its potential in tracing high density material need to quantify anomalies
- (iv) First results show that there is correspondence of an increase in anomaly with an increase in density

Future Aims

- Attempt to model fit the cores in 2 transitions: HCN (J=1-0) and HCN (J=3-2) using MOLLIE (<u>MOL</u>ecular <u>LIne Explorer</u>), a 3D non-LTE code
- Need to understand dynamics of cascade
- Anticipating a similar study with Massive SF regions [G333.6-0.2] – add project data to plot
- Glean from the literature a database of the physical conditions for each starless core as well as candidate massive cores

Acknowledgements

Thanks to detailed discussions with Professor Jonathan Rawlings, Drs. Jungjoo Sohn and Nadia Lo as well as the continued support from Dr. Eric Keto, author of MOLLIE.

Thank you!!!