

Plasma Technology as a new Preservation Technique

R. Rincón and M. D. Calzada

June 2011

Preservation Technique

- On the use of Plasma Technology as a food preservation
 Technique
- Active species and UV radiation un Surface Wave Discharges (SWDs)
- Action of a Surface Wave Discharge on browning of sherry Fino wine and growth rate in lentils

Conclusions

Preservation Technique

- On the use of Plasma Technology as a food preservation
 Technique
- Active species and UV radiation un Surface Wave Discharges (SWDs)
- Action of a Surface Wave Discharge on browning of sherry Fino wine and growth rate in lentils

Conclusions

On the use of Plasma Technology as a food preservation Technique

One serious problem for food industry is the deterioration of foods during the storage

To improve food preservation techniques To develop EW foor rreservation techniques

On the use of Plasma Technology as a food preservation Technique

To develop NEW food	preservation techniques	
Non-thermal alternative Technology	Process	
HPP (High Pressure Processing)	Food is exposed to a high hydrostatic pressure for a few minutes	
PEF (Pulsed Electric Field)	Food is exposed to pulses at high electric field intensity for a few milisecons	
Ionizing radiations	Food is exposed to gamma radiation and electron beam with doses of 2-10kGy	
Ultraviolet (UV) Energy	Food is exposed to non-ionizing radiation with germicidal properties	
Plasma ???		

University of Córdoba- Physics Department

On the use of Plasma Technology as a food preservation Technique

On the use of Plasma Technology as a food preservation Technique

Non-thermal alternative Technology	Process	
HPP (High Pressure Processing)	Food is exposed to a high hydrostatic pressure for a few minutes	
PEF (Pulsed Electric Field)	Food is exposed to pulses at high electric field intensity for a few milisecons	
Ionizing radiations	Food is exposed to gamma radiation and electron beam with doses of 2-10kGy	
Ultraviolet (UV) Energy	Food is exposed to non-ionizing radiation with germicidal properties	
Plasma	Food is exposed to active species like metastable $N_2(A^3\Sigma^+_u)$ and UV photons in the range of 200-280 nm such as those emitted by NO_γ band	

Preservation Technique

- On the use of Plasma Technology as a food preservation
 Technique
 - Active species and UV radiation un Surface Wave Discharges (SWDs)
- Action of a Surface Wave Discharge on browning of sherry Fino wine and growth rate in lentils

Conclusions

Active species and UV radiation in Surface Wave Discharges (SWDs)

How 2.1 Kind of places: Surface Wave Discharge (SWD)

Active species and UV radiation in Surface Wave Discharges (SWDs)

\implies UV photons: de-excitation of NO(A²Σ⁺) \rightarrow UV radiation:220-260 nm

Active species and UV radiation in Surface Wave Discharges (SWDs)

Preservation Technique

- On the use of Plasma Technology as a food preservation
 Technique
- Active species and UV radiation un Surface Wave Discharges (SWDs)
- Action of a Surface Wave Discharge on browning of sherry Fino wine and growth rate in lentils

➡ Conclusions

University of Córdoba- Physics Department

Action of a SWDs on Food: lentils and Sherry Fino wine

➡ <u>LENTILS TREATMENTS:</u>

University of Córdoba- Physics Department

Action of a SWDs on Food: lentils and Sherry Fino wine

LENTILS TREATMENTS:

CONTROL GROUP OF LENTILS

 $Ar-N_2(I)$

 $Ar-N_2$ (II)

Ar-N₂O

University of Córdoba- Physics Department

Action of a SWDs on Food: lentils and Sherry Fino wine

LENTILS TREATMENTS:

CONTROL GROUP OF LENTILS

 $Ar-N_2(I)$

Ar-N₂O

Action of a SWDs on Food: lentils and Sherry Fino wine

Action of a SWDs on Food: lentils and Sherry Fino wine

SHERRY FINO WINE TREATMENTS:

University of Córdoba- Physics Department

Action of a SWDs on Food: lentils and Sherry Fino wine

SHERRY FINO WINE TREATMENTS:

Parameters	Control	Ar-N2 Gas	Ar Post- discharge	Ar-N2 Post- discharge
a*	1.96±0.02	2.30±0.01	3.26±0.02	-0.36±0.01
b*	31.30±0.02	31.20±0.02	34.90±0.01	24.10±0.02
L_{ab} *	82.40±0.03	81.90±0.04	78.60±0.02	90.10±0.04
A420mm	0.701±0.010	0.701±0.010	0.829±0.020	0.459±0.010
A520nm	0.257±0.020	0.265±0.010	0.318±0.010	0.14±0.010
A620mm	0.130±0.010	0.135±0.020	0.166±0.020	0.062±0.020

Preservation Technique

- On the use of Plasma Technology as a food preservation
 Technique
- Active species and UV radiation un Surface Wave Discharges (SWDs)
- Action of a Surface Wave Discharge on browning of sherry Fino wine and growth rate in lentils

➡ Conclusions

The results suggest that plasma Technology could be a New Preservation Technique

We have found that when we exposed lentils to plasma, those samples treated with plasma where exists active species and emission on UV photons grow less than the others samples

The exposure of wine to an Ar-N₂ postdischarge could be used as a technique to increasing the resistance of the Fino wines to browning

Emission spectroscopy is an important tool to assess the capability of plasma technology as a preservation technique

Plasma Technology as a new Preservation Technique

R. Rincón and M. D. Calzada

June 2011

