Constraining sub-orbital structures in AGN Accretion disks from polarized broad emission lines

René W. Goosmann

Astronomical Observatory Strasbourg, France

Observatoire astronomique de Strasbourg

Talk at the 9th Serbian Conference on Spectroscopic Line Shapes in Astrophysics (SCSLSA) 17th May 2013 Banja Koviljaca, Serbia

PROGRAMME

Radio-quiet objects Hidden type-1 AGN

A major break-through for the unified model for NGC 1068 (Antonucci & Miller 1985)

\rightarrow periscope view of AGN in polarized flux

Accreting supermassive black holes...

Smith et al. (2002)

Rotation of polarization angle across emission line

Interpretation and modeling by Smith et al. (2005)

Spectropolarimetric data for Mrk 509 from Goodrich & Miller (1994)

Smith et al. (2002)

Blue polarization wing of the emission line

Interpretation and modeling by Smith et al. (2005)

Spectropolarimetric data for Mrk 509 from Goodrich & Miller (1994)

Similar work on NGC 3783 (Lira et al. 2007)

Smith et al. (2002)

(NLS1)

Smith et al. (2002)

Robinson et al. (2010)

X-ray variability of PHL 1092

Active galactic nuclei vary strongly and rapidly in X-ray brightness.

This constrains the size of the emission site to a very compact region.

→ suggests occurrence of spatially very compact flares

Fabian 1999

Modeling of black hole accretion disks

Face-on

Edge-on

The modeling reveals a fragmented (clumpy) emission structure!

Armitage et al.

Variable(!) correlation of BL profiles with continuum

Gaskell (2011), adapted from Sergeev et al. (2001)

A different approach: off-axis emission

The off-axis irradiation interpretation as worked out by Jovanovic, Popovic, Stalevski, & Shapavalova (2010)

A different approach: off-axis emission

The off-axis scattering model as it is worked out by Gaskell (2011)

RESEARCH IN PROGRESS !

The off-axis model focuses rather on the source than on the scattering regions. The asymmetry lies more in the irradiation pattern and less in the geometry of the different media.

Key element: the 1/r² fall-off in intensity

symmetric)

Maximum polarization on this side

Region correspondi ng to a narrow range of velocity Minimum polarization near flaring region (more

> Modeling of polarized broad emission lines as a function of the source's azimuth has been carried out.

How to implement resonant line scattering

An incoming photon with polarization *n* is resonantly scattered with the outgoing polarization *J*. The change in polarization is governed by a scattering matrix *S*:

$$\begin{pmatrix} J_{\parallel} \\ J_{\perp} \end{pmatrix} = S \begin{pmatrix} n_{\parallel} \\ n_{\perp} \end{pmatrix},$$

The 4x4 scattering matrix elements are related to the atomic transition between the two atomic levels with degenerate angular momentum *M* state

Lee & Blandford (1997)

$$\begin{split} S_{\parallel\parallel} &= \sum_{e} \left\{ \frac{1}{2} \cos^2 \theta_{\rm o} [(R_{ee+1}^{-1})^2 + (R_{ee-1}^{1})^2] + \sin^2 \theta_{\rm o} (R_{ee}^{0})^2 \right\} \\ &\times [\cos^2 \theta_{\rm i} C_{e+1} (R_{ee+1}^{-1})^2 + \sin^2 \theta_{\rm i} C_e (R_{ee}^{0})^2] \\ S_{\parallel\perp} &= \sum_{e} \left\{ \frac{1}{2} \cos^2 \theta_{\rm o} [(R_{ee+1}^{-1})^2 + (R_{ee-1}^{1})^2] + \sin^2 \theta_{\rm o} (R_{ee}^{0})^2 \right\} \\ &\times C_{e+1} (R_{ee+1}^{-1})^2 \\ S_{\perp\parallel} &= \sum_{e} \frac{1}{2} \left[(R_{ee+1}^{-1})^2 + (R_{ee-1}^{1})^2 \right] \\ &\times [\cos^2 \theta_{\rm i} C_{e+1} (R_{ee+1}^{-1})^2 + \sin^2 \theta_{\rm i} C_e (R_{ee}^{0})^2] \right] \\ &\times [\cos^2 \theta_{\rm i} C_{e+1} (R_{ee+1}^{-1})^2 + (R_{ee-1}^{1})^2] \times C_{e+1} (R_{ee+1}^{-1})^2 \end{split}$$

Processes producing (de-)polarization

Synchrotron emission **Electron scattering** Dust (Mie) scattering **Resonant line scattering Dichroic absorption Faraday** rotation Zeeman lilne splitting Dilution (by unpolarized radiation) **General Relativity**

Scattering

Strong polarization: $\Theta = 90^{\circ}$ (Reflection) **Weak** polarization: $\Theta = 0^{\circ}$ (Transmission)

How to implement resonant line scattering

An incoming photon with polarization *n* is resonantly scattered with the outgoing polarization *J*. The change in polarization is governed by a scattering matrix *S* :

$$\begin{pmatrix} J_{\parallel} \\ J_{\perp} \end{pmatrix} = S \begin{pmatrix} n_{\parallel} \\ n_{\perp} \end{pmatrix},$$

The 4x4 scattering matrix elements are related to the atomic transition between the two atomic levels with degenerate angular momentum *M* state

Lee & Blandford (1997)

The off-axis interpretation also explains...

- changes in reverberation lag
- variability of in very narrow velocity ranges of a line profile
- apparent changes of the direction of motion of the gas as revealed by velocity-resolved reverberation mapping.
- and more ... (see Gaskell 2010, 2011)

Off-axis irradition potentially is an alternative interpretation to the presence of binary black holes.

Time-variability of polarized broad emission lines are key to test the off-axis model (monitoring program on the way).

New collaboration with D. Iljic, L. Popovic and collaborators is on the way!