The correlations between spectral properties in the spectra of AGNs type 1

Jelena Kovačević1, Luka Č. Popović1, Milan S. Dimitrijević ${ }^{1}$, Payaswini Saikia ${ }^{1}$

[^0]
Outline:

1. Correlations between spectral AGN properties - a tool to investigate the AGN nature
2. The sample and analysis
3. Fe II template construction
4. Balmer continuum model
5. Contribution of starbursts to spectra of AGN type 1
6. Conclusions

1. Correlations between spectral parameters tools for discovering AGN nature

- Emission lines: complex profiles!
- Different components of emission lines are coming from different layers of emission regions.
- Each component (represented as Gaussian) reflects the physical and kinematical properties of emission region where it arises.
- Correlations between properties of different lines lead to better insight in the AGN structure, and kinematical and physical properties of gas in AGNs.

2. The sample and analysis

- We obtain ~ 330 spectra from SDSS DR7 database, using SQL with criteria:

1. $S / N>20$
2. Good quality of pixels
3. $z<0.7$ and z Conf >0.95
4. Small contibution of stellar component: EW CaK 3934, Mg 5177, H $<1 \AA$
5. Presence of [O III] and broad $\mathrm{H} \beta$ (EW [O III] and EW H $\beta>0$)

2.1 Difficult identification of Fe II lines

complex Fe II ion: produces huge number of Fe II lines in UV, optical and IR;

Sigut \& Pradhan 2003: 827 energy levels, 23000 transitions! (data from Iron Project, Hummer 1993)

Nave \& Johansson 2013: 1027 energy levels, 12900 transitions!

2.2 The Fe II (4400-5500 A) template

Kovačević et al. 2010. ApJS, 189, 15.

> Lover terms of Fe II transitions:
(1) $3 d^{6}\left({ }^{3} F 2\right) 4 s^{4} F \Longrightarrow F$ group (19 lines)
(2) $3 d^{5} 4 s^{2}{ }^{6} S \longrightarrow S$ group (5 lines)
(3) $3 d^{6}\left({ }^{3} G\right) 4 s^{4} G$ G group (1 lines)
(4) 15 lines, which probably originate from higher levels. Their relative intensities are taken from I Zw 1 object (I Zw 1 group).
> All Fe II lines have the same widths and shifts, and their relative intensities are calculated as:

$$
\frac{I_{1}}{I_{2}}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{3} \frac{f_{1}}{f_{2}} \cdot \frac{g_{1}}{g_{2}} \cdot e^{-(E 1-E 2) / k T}
$$

> f - oscillator strength, g - statistical weight, E - energy of upper level of transition, T - excitation temperature, k - Boltzmann constant

Serbian Virtul Obaservatory: http://servo.aob.rs/Fell_AGN/

Fe II (4000-5500 A) template in AGN spectra

Fit one spectrum Fit multiple spectra
spectrum (ascii):
Temperature (K):
Doppler width of Fe II lines (km/s):
The shift of Fe II lines (km/s):
Intensity of F Fe II group of lines:
Intensity of S Fe II group of lines:
Intensity of G Fe II group of lines:
Intensity of P Fe II group of lines:
Intensity of I Zw 1 Fe II group of lines
Number of iterations:

Submit Query

Fe ll lines

Theory

Optical Fe II lines in AGN spectra
 The Fe II template
 References

Fit Fe II lines
Fit one spectrum
Fit more spectra
Fe II template
download

3.1 Balmer continuum

- determination of the UV pseudocontinuum in the sample
- Not easy because of complex shape of UV pseudocontinuum:

Power low + Balmer continuum (Grandi 1982)

Balmer continuum fitting: Problems

Tsuzuki et al. 2006, Sameshima et al. 2010

Jin et al. 2012

$$
F_{\lambda}^{B C}=F_{\lambda}^{B E} e^{h c /\left(\lambda_{B E} k T_{e}\right)} \int_{0}^{+\infty} e^{-h c /\left(\lambda k T_{e}\right)}\left(G\left(\lambda_{1}-\lambda\right) \partial \lambda_{1}\right. \text { (2) }
$$

Convolving Balmer continuum equation with Gaussian
$($ FWHM Gaussian $=$ FWHM broad $\mathrm{H} \beta$)

Our model of Balmer continuum

- We try to make model which:
- we could use for fitting spectra within 2900 A - 5500 A range (with two continuum windows). It could be done by reducing number of free parameters: calculating the intensity of Balmer continuum!
- we try to make good fit near Balmer edge (3646 A)!

Our model consists of:

Power law + Balmer continuum ($\lambda<3646 \mathrm{~A}$) + high order Balmer lines ($\mathrm{n}=3-400$), ($\lambda>3646 \mathrm{~A}$)

They are fitted by one Gaussian with the same width and shift as $\mathrm{H} \gamma$. The relative intensites for Balmer lines with $\mathrm{n}<50$ are taken from the paper: Storey and Hummer 1995.
Relative intensities for $50<\mathrm{n}<400$ are calculated using approximate formula:

$$
\begin{aligned}
&\left.\frac{I_{1}}{I_{2}}=\frac{1\left(T, N_{e}\right)}{g_{2}\left(T, N_{e}\right)}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{3} \frac{f_{1}}{f_{2}} \cdot \frac{g_{1}}{g_{2}}\right) e^{-(E 1-E 2) / k T} \\
& \approx 1
\end{aligned}
$$

Examples of fit:

4. Results

4.3 Contribution of starbursts to AGN spectra: the broad line AGNs

- Some indications that AGN+starbursts could coexist in one phase of evolution (Wang \& Wei 2006, 2008, Mao et al. 2009).
- NLSy 1: Starburst contribution in narrow lines (Mao et al. 2009)

Division of the sample by different source of ionization:

- Diagnostic BPT diagram (Baldwin, Philips Terlevich 1981)
- We adopt division: $\mathrm{R} \lessgtr \log \left([\mathrm{O} \text { III }]_{5007} / \mathrm{HB}\right)$

Kewley et al. 2001, ApJ, 556, 121 Kauffmann et al. 2003, MNRAS, 346, 1055

4. Results

4.3 Contribution of starbursts to AGN spectra: AGNs type 1!

3.4 Division of the sample according the different source of ionization

- We try to check is this division criterium correct:
$\mathrm{R} \log \left([\mathrm{O}\right.$ III $\left.] / \mathbf{H} \beta_{N L R}\right) \lessgtr \mathbf{0 . 5}$
> Brungardt 1988 observed the correlation between $\mathrm{L}_{\text {cont }}$ and FWHM [O III] for starbursts.
$\mathrm{R}<0.5$
"starburst+AGN" subsample

R > 0.5
"pure AGN" subsample

Confirmation of criteria:

$$
\mathrm{R}=\log \left([\mathrm{O} \text { III }] / \mathbf{H} \beta_{N L R}\right) \lessgtr \mathbf{0 . 5}
$$

Popović, L. Č. \& Kovačević, J., 2011, ApJ, 738, 68.

4. Results:

4.1 Differences between spectral properties of "pure AGN" and "starburst+AGN" subsample $\left(\mathrm{R}=\log \left([\mathrm{O} \mathbf{I I I}] / \mathbf{H} \beta_{N L R}\right) \lessgtr \mathbf{0 . 5}\right)$

Spectral Parameter		(λL_{5100})	$\log (\mathrm{F}$	M H β)	\log	[O III])		Fe II)	$\log (\mathrm{E}$	β NLR)	\log (E	β broad)	\log (FW	$10 \% \mathrm{H} \beta$)
	r	P		P	r	P	r	P	r	P	r	P	,	P
		al sample	0.42	2.3E-14	-0.45	2.2E-16	0.27	$1.6 \mathrm{E}-6$	-0.41	$9.4 \mathrm{E}-14$	0.14	0.02	0.43	5.1E-15
$\log \left(\lambda L_{5100}\right)$		(1)	0.26	$1.1 \mathrm{E}-4$	-0.51	$3.6 \mathrm{E}-15$	0.29	$2.4 \mathrm{E}-5$	-0.56	0	-0.03	0.67	0.29	2.3E-5
		(2)	0.81	0	-0.46	4.2E-6	0.26	0.01	-0.27	0.01	0.56	9E-9	0.81	0
$\log ($ FWHM H β)	0.42	2.3E-14	Total sample		-0.07	0.24	-0.24	2.3E-5	-0.34	1.5E-9	0.48	0	0.90	0
	0.26	$1.1 \mathrm{E}-4$	(1)		-0.08	0.24	-0.37	3.2E-8	-0.25	$1.9 \mathrm{E}-4$	0.38	$1.2 \mathrm{E}-8$	0.88	0
	0.81	0	(2)		-0.42	4.1E-5	0.26	0.01	-0.15	0.16	0.53	4.8E-8	0.89	0
	-0.45	2.2E-16	-0.07	0.24	Total sample		-0.41	$6.8 \mathrm{E}-14$	0.32	$2.1 \mathrm{E}-8$	0.24	2.4E-5	-0.05	0.38
$\log (\mathrm{EW}[\mathrm{Om}])$	-0.51	$3.6 \mathrm{E}-15$	-0.08	0.24			-0.38	7.9E-9	0.73	0	0.26	1.1E-4	-0.05	0.51
	-0.46	4.2E-6	-0.42	4.1E-5	(2)		-0.27	0.01	0.53	$5.9 \mathrm{E}-8$	-0.11	0.29	-0.48	$1.5 \mathrm{E}-6$
	0.27	1.6E-6	-0.24	2.3E-5	-0.41	$6.8 \mathrm{E}-14$	Total sample		-0.01	0.80	0.07	0.23	-0.26	6.3E-6
$\log (\mathrm{EW} \mathrm{Fe}$ II)	0.29	$2.4 \mathrm{E}-5$	-0.37	$3.2 \mathrm{E}-8$	-0.38	7.9E-9			-0.28	$3.9 \mathrm{E}-5$	0.04	0.57	-0.38	$1.4 \mathrm{E}-8$
	0.26	0.01	0.26	0.01	-0.27	0.01	(2)		-0.04	0.67	0.49	$9.4 \mathrm{E}-7$	0.27	0.01
	-0.41	$9.4 \mathrm{E}-14$	-0.34	1.5E-9	0.32	2.1E-8	-0.01	0.80	Total sample		-0.16	0.005	-0.36	$1.6 \mathrm{E}-10$
$\log (\mathrm{EW} \mathrm{H} \beta$ NLR)	-0.56	0	-0.25	$1.9 \mathrm{E}-4$	0.73	0	-0.28	$3.9 \mathrm{E}-5$			0.08	0.23	-0.25	$2.4 \mathrm{E}-4$
	-0.27	0.01	-0.15	0.16	0.53	5.9E-8	-0.04	0.67	(2)		-0.21	0.05	-0.21	0.05
\log (EW H β broad)	0.14	0.02	0.48	0	0.24	2.4E-5	0.07	0.23	-0.16	0.005	Total sample(1)		0.50	0
	-0.03	0.67	0.38	1.2E-8	0.26	1.1E-4	0.04	0.57	0.08	0.23			0.42	1.5E-10
	0.56	9E-9	0.53	4.8E-8	-0.11	0.29	0.49	$9.4 \mathrm{E}-7$	-0.21	0.05	(2)		0.49	$6.4 \mathrm{E}-7$
$\log ($ FWMI $10 \% \mathrm{H} \beta$)	0.43	5.1E-15	0.90	0	-0.05	0.38	-0.26	6.3E-6	-0.36	$1.6 \mathrm{E}-10$	0.50	0	Total sample	
	0.29	2.3E-5	0.88	0	-0.05	0.51	-0.38	$1.4 \mathrm{E}-8$	-0.25	$2.4 \mathrm{E}-4$	0.42	1.5E-10	(1)	
	0.81	0	0.89	0	-0.48	1.5E-6	0.27	0.01	-0.21	0.05	0.49	6.4E-7	(2)	

Popović, L. Č. \& Kovačević, J., 2011, ApJ, 738, 68.

4. Results:

Differences between spectral properties of "pure AGN" and "starburst+AGN" subsample

Popović, L. Č., \& Kovačević, J., 2011 , ApJ, 738, 68.

4. Results:

4.1 Differences between spectral properties of "pure AGN" and "starburst+AGN" subsample - Baldwin effect!

$>L_{\text {cont }} \AA$ EW HB broad λ
Only in
"AGN+starburst"
subsample

Conclusions:

- The calculated optical iron template ($4000-5500$ Å) gives very good fit of Fe II lines and enables detailed investigation of Fe II lines in AGN spectra.
- Model with high order Balmer lines $n=3-400$, for $\lambda>3646 A$, improve the fit near Balmer edge, and enables the calculation of the intensity of Balmer continuum. This is specially important in case of using luminosity at 3000 A , for calculation of black hole mass.
- The presence of starbursts nearby AGNs, i.e. influence of additional source of ionization to AGN emission regions, reflects in some significantly different correlations between spectral properties. Possible influence of starbursts to emission of broad lines? (in that case - problem with measuring of black hole mass!)
- The Baldwin effect correlations depend on dominant source of ionization in a sample (accretion disc or starburst?).

[^0]: ${ }^{1}$ Astronomical Observatory Belgrade, Serbia

