

and their emission lines as cosmological probes

3

Paola Marziani INAF, Osservatorio Astronomico di Padova, Italia Jack W. Sulentic Instituto de Astrofísica de Andalucía (CSIC)

The composite quasar spectrum from the Sloan DSS (Van den Berk et al. 2001; Marziani et al. 2006)

Distinctive emission line spectrum with prominent lines and continuum raising toward UV

Broad (FWHM > 1000 km s⁻¹), low ionization (< 20 eV; H β , FeII,MgII λ 2800) and high ionization lines

Why have quasars never been successfully used as cosmological probes?

1.Quasars are plentiful 2.very luminous $L > 10^{48}$ erg s⁻¹ 3.observed in an extremely broad range of redshift 0 < z < 7 4.relatively stable

Broad (FWHM > 1000 km s⁻¹), low ionization (< 20 eV; H β , FeII,MgII λ 2800) and high ionization lines

They are also sources with an evolving luminosity function, open-ended at low L

Quasar spectral properties do not show strong signs of dependence on luminosity

not yet fully understood

Can Quasars tell us anything on the geometry of the Universe?

Hubble diagram for the brightest quasars

Curves predict the apparent magnitude of a quasar of "maximum" mass radiating at Eddington limit

 $H_0 \sim 60-70 \text{ km s}^{-1}$ Mpc⁻¹

Bartelmann et al. 2009

Several approaches were devised to exploit quasars for cosmology:

Correlations with Luminosity the Baldwin Effect

Time delay methods (present and future) Broad Line Region reverberation [accretion disk reverberation] [Gravitational lenses]

"Eddington standard candles" super-Eddington accreting massive black holes (SEAMBHs) xA sources in 4D "eigenvector 1" space

Other methods PCA, line widths, etc.

Baryon acoustic oscillations in the Lya forest of BOSS quasars (Busca et al. 2013)

The Baldwin effect

 $\mu = z/(1+z)$

modified Hubble diagram

Kinney et. al. 1990

Weak Anticorrelation

(Dietrich et al. 2002; Croom et al. 2002; Xu et al. 2009, Bian et al. 2012)

The cosmological expectations raised by the original Baldwin Effect did not live up to the dispersion

The Baldwin effect: a more modern assessment

(see Sulentic et al., 2000, ARAA 38,521 for a synopsis up to mid-1999)

Brotherton & Francis 1999

The Baldwin effect confirmed by recent SDSS-based studies

Xu et al. 2008; c.f. Bian et al. 2012

What is the origin of the Baldwin effect? Is there any hope to use it for cosmology?

Baldwin effect: dependence on Eddington ratio is stronger

Variable Name ^a	r.b	Prb
νL _ν (3000Å)	-0.154	1.71×10^{-01}
	-0.018	9.08×10^{-01}
L/L _{Edd}	-0.581	1.31×10^{-08}
	-0.642	1.53×10^{-06}
α _{cx}	0.525	4.87×10-07
	0.463	$1.18 \times 10^{-0.3}$
[O III] λ5007 EW	0.624	4.71×10^{-10}
	0.708	3.67×10^{-08}
Fett EW	-0.518	7.49×10-07
	-0.536	1.24×10^{-04}
H\$ FWHM	0.427	7.03×10 ⁻⁰⁵
	0.510	2.92×10-04

0.624

-0.626 -0.698

0.471

0.494

6.94×10°

9.23×10-06

 4.89×10^{-04}

Table 2. The main Ctv EW correlations.

R [O III] $\lambda 5007$ peak height

R Fe II EW

R [O III] λ5007 EW

Bachev et al. 2004; Baskin & Laor 2005; Sulentic et al. 2007; Marziani et al. 2008

Selection effects on a flux limited sample

Spectral evolution results (the "Baldwin effect") could be mainly due to selection effects

"Theoretical" BE plane W(CIV λ 1549) vs L_{ν}

The expected Baldwin effect slope computed assuming:

- An *L/M* distribution as observed for low-z quasars;
- The relation *L/M*-W(CIVλ1549) derived for low-*z* quasars

A slight anti-correlation is expected in a volume limited sample at a fixed z; it becomes steeper if a flux-limit is introduced. Eddington ratio evolution enhances the effect.

(Marziani et al. 2008)

1) Any linear size that can be used as a standard ruler?

2) Accretion onto a massive compact object Accretion rate (L_{bol}) : dependences too weak and affected by selection effects;

an almost self similar phenomenon over an extremely wide range of black hole mass (M_{BH});

Eddington ratio (L_{bol}/M_{BH}).

Line luminosity due to photoionization by FUV continuum Lines respond to continuum luminosity change

Telfer et al. 2002

Emitting region distance r_{BLR} from central continuum source Peak or (centroid) of the cross-correlation function between line and continuum $\text{CCF}(\tau) = \int \mathcal{L}(t)\mathcal{C}(t+\tau)dt$ $r_{\text{BLR}} = c\tau_{\text{H}\beta}$ from H β available for ~60 low-z AGN as of early 2013 (Kaspi et al. 2005, Bentz. et al. 2009; 2013)

$c\tau$ from reverberation as a standard ruler

Great promise with photometric reverberation

A parenthesis: 1997 - 2013, Supernovae, CMB, etc.

10-15 years ago (1998-2003)only few Supernovae at z>1

Hubble diagram with type Ia Supernovae Supernova Cosmology Project

Riess et al. 2004

Supernova Legacy Survey: where we are now

WMAP 9 yr and Planck combined results

Hinshaw et al. 2013

	WMAP SEVEN-YEAF	TAB a to Nine-year Compari	LE 3 Son of the Six-Para	METER ACDM Model ^a	
Parameter	Nine-year	WMAP-only ^b Nine-year (MASTER) ^c	Seven-year	WMAP+I Nine-year	BAO+H ₀ ^b Seven-year
Fit parameters					
$\Omega_b h^2$	0.02264 ± 0.00050	0.02243 ± 0.00055	$0.02249^{+0.00056}_{-0.00057}$	0.02266 ± 0.00043	0.02255 ± 0.00054
$\Omega_c h^2$	0.1138 ± 0.0045	0.1147 ± 0.0051	0.1120 ± 0.0056	0.1157 ± 0.0023	0.1126 ± 0.0036
Ω_{Λ}	0.721 ± 0.025	0.716 ± 0.028	$0.727^{+0.030}_{-0.029}$	0.712 ± 0.010	0.725 ± 0.016

	Planck	(CMB+lensing)	Planck+	WP+highL+BAO
Parameter	Best fit	68 % limits	Best fit	68 % limits
$\Omega_{\rm b}h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017
Ω_{Λ}	0.6964	0.693 ± 0.019	0.6914	0.692 ± 0.01

Ade et al. 2013

Is the acceleration of the Universe still an issue?

Dark energy: evolution of the equation of state? $\frac{P}{\rho} = w(a) = w_0 + w_a \frac{z}{1+z}$

7 year WMAP

9 year WMAP

Hinshaw et al. 2012

Komatsu et al. 2011

Quasar data could cover almost uniformly the range between 0 and 4

The 4D Eigenvector 1 Space

Observed parameter	Physical parameter	Accretion interpretation
$R_{FeII}=I(FeII)/I(H\beta)$	Ionization degree Z	L/LEdd
FWHM(H β)	velocity field of low-ionization gas	L/L _{Edd} , M _{BH} , orientation
CIVλ1549 Shift	velocity field of high-ionization gas	<i>L/L</i> _{Edd} , orientation
$\Gamma_{\rm soft}$ (0.2-2 KeV)	Continuum emission	L/LEdd

Optical plane of 4DE1 Wang et al. 1996; Boller et al. 1996; Sulentic et al. 2000, Grupe 2004; Kuraszkiewicz et al. 2008

Fig. 2. Spectra with a power law fitted in the 2–12 keV band, showing the soft excess residuals below 2 keV.

4D E1: soft-X photon index Γ_{soft}

Optical plane of Eigenvector 1: Spectral types in bins to account for quasars' diverse properties

Sulentic et al. 2002

Eddington standard candles

 $L = \eta L_{\rm Edd} = {\rm const} \eta M_{\rm BH}$

Two main issues: 1) definition of a sample with "known" L/L_{Edd} ($\eta \Rightarrow 1$); 2) can any method based on L/L_{Edd} estimates be applied in practice to actual data and give relevant results?

Virial Black Hole Mass

 $M_{\rm BH}$: if $\delta v = {\rm FWHM}$, isotropy : $\frac{\sqrt{3}}{2} {\rm FWHM} \rightarrow f = 0.75$ f = 2.0 more appropriate for Pop. A sources

> Keplerian velocity field: the BLR dynamics dominated by the gravity of a central mass; $v \propto r^{-1/2}$

$\Gamma_{\rm hard} \geq 2$

A sufficient condition to isolate high accretors (?)

Fanali et al. 2013

Jin et al. 2012

Fig. 2. Disk luminosity as a function of \dot{m} . The asterisks denote the calculated luminosities, whereas the solid line shows the fitting formula (8). It is clear that an increase in L is suppressed at $L > 2L_{\rm E}$.

super-Eddington accreting massive black holes (SEAMBHs)

steepening of hard X-ray continuum in an advection-dominated accretion scenario

 $L = L_0 (1 + \operatorname{const} \ln \dot{m}) M_{BH}$

Mineshige et al. 2000

Wang et al. 2013

The distance of the BLR from the central photoionzing continuum source

ionization parameter $U = \frac{\int_{\nu_0}^{+\infty} \frac{L_{\nu}}{h\nu} d\nu}{4\pi r_{\rm BLB} n_{\rm e} c}$

 $r_{\rm BLR} = \left(\frac{\int_{\nu_0}^{+\infty} \frac{L_{\nu}}{h\nu} d\nu}{4\pi U n_{\rm e} c}\right)^{\frac{1}{2}}$

 $r_{\rm BLR} = \frac{1}{\underbrace{(4\pi c)^{\frac{1}{2}}}_{\rm const}} \underbrace{(Un_{\rm e})^{-\frac{1}{2}}}_{\rm diagnostics} \left(\int_{\nu_0}^{+\infty} \frac{L_{\nu}}{h\nu} d\nu \right)$ const.

Relation for luminosity not dependent on zassuming the Eddington ratio is known, and that the virial relation applies with $r_{\rm BLR} \alpha L^{0.5}$

 $L = \eta L_{\rm Edd} = {\rm const} \eta M_{\rm BH}$

fraction of ionizing luminosity

 $L \approx 7.8 \ 10^{44} \frac{\eta_1^2 \kappa_{0.5} f_2^2}{\bar{\nu}_{12.42}} \frac{1}{10^{16}} \frac{1}{(nU)_{9.6}} v_{1000}^4 \text{ erg s}^{-1}$

average frequency of ionizing photons

cf Marziani et al. 2003; Teerikorpi 2005

Defining a sample $L/L_{Edd} \Rightarrow 1$: A preliminary analysis

Careful consideration of the line profile is needed to compute M_{BH} and L/L_{Edd}: asymmetry ⇒ non-virial motion

Optical and UV spectral systematic changes along E1

Bachev et al. 2004; Negrete et al. 2012

 $\frac{\text{BROAD COMPONENT}}{\text{emitting all LILs, low ionization, high density, large } N_{\text{c}}$ $\frac{\text{presumed VIRIAL component whose width}}{\text{can be used for } M_{\text{BH}} \text{ computations}}$

Including non virial components:

Sulentic et al. 2007

Black hole mass overestimates \Rightarrow L/L_{Edd} underestimates

The targets: high luminosity equivalents of NLSy1s

Sample selection criteria based on emission line ratios:
1) optical R_{FeII} > 1.0
2) UV AIIII λ1860/SiIII]λ1892>0.5

No broad line width selection criterion

3 preliminary quasar samples:

Hβ SDSS; 0.4 < z < 0.75
 Hβ VLT ISAAC; 0.9 < z < 1.5
 SDSS UV AlIIIλ1860; 2< z < 2.6

62 sources in total

Dispersion in L/L_{Edd} and a posteriori verification:

Results: comparing "virial luminosity" L(v) and luminosity L(z)estimated from z

 $L = 4\pi d^2(z, \Omega_{\rm M}, \Omega_{\Lambda})(\lambda f_{\lambda}) \cdot 10^{\rm B.C.}$

 $\Delta = \Delta \log L(z) = \log L(v) - \log L(z)$ $\Delta \log L(z) = \overline{\Delta \log L} + \zeta(z)$ $\Delta \log L(z) = a + b \cdot z$

Results for samples 1,2,3: n = 62, rms(logL)=0.4 $\Omega_{\rm M} \approx 0.30 \pm 0.06(1\sigma)$ assuming H_0 and $\Omega_{\rm M} + \Omega_{\Lambda} = 1.0$

Results on some relevant models

	b^{a}	$H_0 =$	=60	$H_0 =$	=70	$H_0 =$	=80
		$\bar{\Delta}/\sigma_{\bar{\Delta}}{}^{\mathrm{b}}$	$\chi^{ m 2c}$	$\bar{\Delta}/\sigma_{\bar{\Delta}}{}^{\mathrm{b}}$	$\chi^{ m 2c}$	$\bar{\Delta}/\sigma_{\bar{\Delta}}{}^{\mathrm{b}}$	$\chi^{ m 2c}$
Concordance	-0.031	-5.247	1.602	-2.61	1.227	-0.331	1.106
Λ -dominated	-0.236	-11.59	4.156	-9.16	3.084	-7.056	2.358
M-dominated	0.056	0.60	1.129	3.208	1.312	5.47	1.673
Little Matter	-0.094	-5.71	1.637	-2.578	1.262	-0.33	1.14
Empty	-0.126	-6.147	1.885	-3.581	1.408	-1.359	1.199

Table 6. Properties of luminosity residuals

^aSlope of best fitting line (unweighted χ^2) of $\delta \log L$ vs. z. Uncertainty is \pm 0.07 (standard error propagation) and \pm 0.07 (bootstrap). The slope and its uncertainty are not dependent on H_0 .

^bRatio between the average of $\delta \log L$ and the average standard deviation.

^cNormalized χ^2 .

Results for mock sample: n = 200, rms(logL)=0.2(assuming concordance ACDM)

Results for mock sample: n = 100, rms(logL)=0.1(assuming concordance ACDM)

A simplified error budget for statistical errors

 $L \approx 7.8 \ 10^{44} \frac{\eta_1^2 \kappa_{0.5} f_2^2}{\bar{\nu}_{i_{2,42,10^{16}}}} \frac{1}{(nU)_{9.6}} v_{1000}^4 \quad \text{erg s}^{-1}$

 $L = 4\pi d^2(z, \Omega_{\rm M}, \Omega_{\Lambda})(\lambda f_{\lambda}) \cdot 10^{\rm B.C.}$

Main source of statistical error: FWHM measurement errors

Table 5.	Error E	Budget
Parameter p	$\log \frac{\delta p}{p}$	Power
Virial	luminos	ity
η	0.127	2
$\kappa/(\bar{\nu}10^{nU})$	0.055	1
f	0.079	2
FWHM	0.079	4
Prop. err.	0.439	
z-based	l lumino	sity
f_{λ}	0.041	1
z	0.009	2
B.C.	0.079	1
Prop. err.	0.091	
Total err.	0.449	

Constraining the continuum of xA sources

NLSy1 SEDs: optical/UV/soft X Grupe et al. 2010; hard X: Panessa et al. 2011

Statistical errors

can be reduced to rms ≈ 0.3

Efforts should be oriented toward obtaining a larger sample (≥300 sources)

Systematic errors

1) increasing R_{FeII} and AlIII λ 1860/SIII] λ 1892 2) bolometric correction dependent on L

an analysis is possible only on a larger sample of real data

Conclusions

Quasars potential for cosmographic studies has not been exploited yet

Most promising methods involve the identification of "Eddington standard candles"

"Eddington standard candles" could cover a range of distances where the metric of the Universe has not been "charted" as yet

The potential may extend to the physics of accelerated expansion...