Reverberation mapping of the quasar PG 1247+268

Michele Perna

Università di Roma La Sapienza

Collaborators: D.Trevese, F.Vagnetti, D.Paris, and F.G.Saturni

9th Serbian Conference on Spectral Line Shapes in Astrophysics

The masses of the AGN's black holes

The emission-lines "reverberate" to the continuum changes.

$$t_{\text{lag}} = R_{\text{BLR}} / C$$

Reverberation Mapping: BLR very close to BH.

High velocity, ionized clouds give rise broad emission lines.

Virial reverberation mass:

$$M_{\rm BH} = \frac{fR\Delta V^2}{G}$$

f, scale factor; **▲V**, line width ; **R**, R_{BLR} = c t_{lag}.

Time Lag

$$\frac{\text{Cross-correlation function}}{S_L S_C} \quad CCF(\Delta t) = \frac{1}{N} \sum \frac{\left[L(t_i) - \overline{L}\right] \left[C(t_j - \Delta t) - \overline{C}\right]}{S_L S_C}$$

"Interpolation" method (ICCF) (Gaskell & Peterson 1987), "Discrete" CCF method (DCF) (Edelson & Krolik 1988),

as implemented by White & Peterson94

Unbinned cross-correlation function

$$UDCF (\Delta t) = \frac{\left[L[t_i] - \overline{L}\right] \left[C(t_j) - \overline{C}\right]}{S_L S_C}$$

Averaging over M pairs for which $\Delta t - \delta t/2 \le t_i - t_j \le \Delta t + \delta t/2$, the discrete cross-correlation function is

$$DCF(\Delta t) = \frac{1}{M} \sum UDCF_{ij}$$

Uncertainties?

BLRs virialized?

& virial relationship with $M = 6 \times 107 M_{\odot}$.

Highest ionization emission-lines respond most rapidly to continuum changes. There is ionization stratification of the BLR.

L-R relation

For qso with $L \le 10^{46} ergs^{-1}$:

Hβ BLR size scales with the 5100 Å luminosity as

$$R \propto L^{0.5}$$

(Kaspi et al. 2005; Bentz et al. 2006, 2009a)

Expand the range to high L will require some 5-10 yr of observation

Single-epoch determination

$$R_{BLR} = c_1 L_{\lambda}^{\gamma}$$
 $M_{BH} = c_2 L_{\lambda}^{\gamma} (\Delta V)^2$

single-epoch (S.E.) determination of the M_{BH} from their luminosity and with FWHM of emission-line.

$$M_{BH} = 8.3 \cdot 10^{6} \left(\frac{FWHM(H \beta)}{10^{3} \text{ km/s}} \right)^{2} \left(\frac{\lambda L_{\lambda}(5100A)}{10^{44} \text{ ergs/s}} \right)^{0.50} M_{\odot}$$

Vestergaard & Peterson 2006

Empirical method for large statistical sample: cosmological evolution of the mass function.

S.E. relation requires the extrapolation to high luminosity and redshift of a relation whose calibration performed for $L \le 10^{46} \text{ erg s}^{-1}$ and $z \le 0.4$

New campaign for spectrophotometric monitoring of luminous, intermediate redshift QSOs

Single-epoch determination

From Kaspi et al. 2007

rest-frame

2.6

Object (1)	R.A. (J2000.0) (2)	Decl. (J2000.0) (3)	m_V (4)	Redshift (5)	N _{phot} (6)	N _{spec} (7)	$ \begin{array}{c} \lambda L_{\lambda}(5100 \text{ \AA}) \\ (8) \end{array} $
			Pho	otometric and	Spectroph	otometric	
S4 0636+68	6 42 04.2	67 58 36	16.6	3.180	90	11	47.28
S5 0836+71	8 41 24.3	70 53 42	16.5	2.172	70	16	46.81
SBS 1116+603	11 19 14.3	60 04 57	17.5	2.646	85	15	46.92
SBS 1233+594	12 35 49.5	59 10 27	16.5	2.824	76	15	46.97
SBS 1425+606	14 26 56.2	60 25 51	16.5	3.192	90	21	47.43
HS 1700+6416	17 01 00						
elay of 188 day $10^9~M_{\odot}$	o Cross-Correlation Coeffic	0.5 0 -0.5 -1 -500					
				Time I	lag [da	vs]	

The campaign, PG 1248+268

Absence of Hα, Hβ, Hγ observe
in the low redshift study

Object	z	V	$\log[\lambda L_{\lambda}(5100 \text{ Å})]$
			$[erg s^{-1}]$
APM 08279+5255	3.911	15.20	47.7
PG 1247+268	2.042	15.60	47.0
PG 1634+706	1.337	15.27	46.7
HS 2154+2228	1.290	15.30	46.7

$$\begin{split} \lambda_{continuum} &\in [4408, 4450] \\ \lambda_{short} &\in [4450, 4502] \ and \ \lambda_{long} \ \in \ [5202, 5262] \ (CIV) \\ \lambda_{short} &\in [5535, 5695] \ and \ \lambda_{long} \ \in \ [6025, 6085] \ (CIII]) \end{split}$$

PG 1247+268: discrete cross-correlation

PG 1247+268: discrete cross-correlation

SPEAR (Stochastic Process Estimation for AGN Reverberation)

THE ASTROPHYSICAL JOURNAL, 735:80 (16pp), 2011 July 10 © 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/0004-637X/735/2/80

AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI

YING ZU¹, C. S. KOCHANEK^{1,2}, AND BRADLEY M. PETERSON^{1,2}

¹ Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA; <u>yingzu@astronomy.ohio-state.edu</u> ² Center for Cosmology and AstroParticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210, USA *Received 2010 August 3; accepted 2011 April 19; published 2011 June 20*

ABSTRACT

Motivated by recent progress in the statistical modeling of quasar variability, we develop a new approach to measuring emission-line reverberation lags to estimate the size of broad-line regions (BLRs) in active galactic nuclei. Assuming that all emission-line light curves are scaled, smoothed, and displaced versions of the continuum, this alternative approach fits the light curves directly using a damped random walk model and aligns them to recover the time lag and its statistical confidence limits. We introduce the mathematical formalism of this approach and demonstrate its ability to cope with some of the problems for traditional methods, such as irregular sampling, correlated errors, and seasonal gaps. We redetermine the lags for 87 emission lines in 31 quasars and reassess the BLR size–luminosity relationship using 60 H β lags. We confirm the general results from the traditional cross-correlation methods, with a few exceptions. Our method, however, also supports a broad range of extensions. In particular, it can simultaneously fit multiple lines and continuum light curves which improves the lag estimate for the lines and provides estimates of the error correlations between them. Determining these correlations is of particular importance for interpreting emission-line velocity–delay maps. We can also include parameters for luminosity-dependent lags or line responses. We use this to detect the scaling of the BLR size with continuum luminosity in NGC 5548.

Key words: galaxies: active - galaxies: nuclei - galaxies: Seyfert - quasars: general

Online-only material: color figures

SPEAR (Stochastic Process Estimation for AGN Reverberation)

SPEAR (Stochastic Process Estimation for AGN Reverberation)

Quasar variability well described by a damped random walk

$$\left\langle s_{c}(t_{i})s_{c}(t_{j})\right\rangle =\sigma^{2}exp\left(-\left|t_{i}-t_{j}\right|/\tau\right)$$

Amplitude $\sigma^2 = \hat{\sigma}^2 \tau/2$

Damping time scale $\pmb{\tau}$

Line-continuum Covariance
$$\langle s_l(t_i)s_c(t_j)\rangle = \int dt'g(t_i - t') \langle (s_c(t')s_c(t_j)\rangle$$

Transfer function
$$g(t-t') = A(t_2-t_1)^{-1}$$
per $t_1 \le t-t' \le t_2$ Mean lag $t_{lag} = (t_1+t_2)/2$ Temporal width $\Delta t = t_2-t_1$ •BLR uniform thin shell
 $(t_1 ->0)$ •delta function
 $(\Delta t ->0)$

PG 1247+268: SPEAR

PG 1247+268: SPEAR

 $t_{lag CIII} = 252^{+39}_{-25} days$ $t_{lag\ CIV} = 107^{+32}_{-54}\ days$ $t_{lag \ CIII} \approx 2 - 3 \ t_{lag \ CIV}$ (Onken & Peterson 2002; Wandel & Peterson 1999) $t_{lag CIII} \approx 2.4 t_{lag CIV}$

PG1247+268: measures of Line Width

To determine FWHM and velocity dispersion $\sigma_{\text{line (second moment of the profile)}}$ and their associated uncertainties, we employ a bootstrap method (Peterson+2004).

PG 1247+268: Мвн

$$M_{\rm BH}=rac{fR\Delta V^2}{G}~{
m f}$$
 = 3 (Netzer 1990):

 $\Delta V_{\sigma_{line}}(CIII] - rms \ spectrum) = 1533 \pm 583 \ km/s$

$$t_{lag \ CIII} = 252^{+39}_{-25} \ days$$

 $M_{Rev}(CIII] - \sigma_{line}) = 3.5^{+4.2}_{-2.3} \cdot 10^8 M_{\odot}$

$$\Delta V_{\sigma_{line}}(CIV - rms \ spectrum) = 2012 \pm 453 \ km/s$$

$$M_{Rev}(CIV - \sigma_{line}) = 2.5^{+2.4}_{-1.8} \cdot 10^8 M_{\odot}$$

$$t_{lag\ CIV} = 107^{+32}_{-54} \ days$$

S5 0836+71 (LUV = $1.12 \cdot 10^{47}$ erg/s , z = 2.172):

factor of 8 higher mass than PG 1247+268 (LUV = $1.94 \cdot 10^{47}$ erg/s, z=2.042); FWHM and t_{lag} : factor $\frac{1}{2}$ higher than PG1247+268.

PG 1247+268: S.E. Мвн

Single-Epoch determination:

$$M_{BH} = 4.5 \cdot 10^{6} \left(\frac{FWHM(CIV)}{10^{3} \text{ km/s}} \right)^{2} \left(\frac{\lambda L_{\lambda} (1350A)}{10^{44} \text{ ergs/s}} \right)^{0.53} M_{\odot}$$

Vestergaard & Peterson 2006

	M_{PG1}	$_{247+267}(10^8 M_{\odot})$	$_{\odot}) M_{S5083}$	$_{36+71}(10^8 M_{\odot})$
$M_{Rev}(CIV - FWHM)$ $M_{S.E.}(CIV - FWHM)$		$3.0^{+3.0}_{-2.1}$ $33.5^{+1.9}_{-1.9}$		26^{*} 100*
		PG 1247+267	S5 0836+71	
	$\left(\frac{M_{S.E.}}{M_{Rev.}}\right)_{FWHM(media)}$	11	4	-

S.E. relation from R(Hβ)-LUV, not from R(CIV)-LUV.

$R(H_{\beta})$ -Luv vs R(CIV)-Luv

R(Hβ)-Luv, Vestergaard & Peterson 2006; slope $\alpha = 0.53$. 10^{3} MACHO 13.6805.324 10^{2} CS50836 $CIV \lambda 1549$ (2000) BLR size (light days) 3C 390, 3 rest-UV iron blend PG1247+267 $MgH\lambda 2800$ CIII] λ1909 10° NGC 3783 NGC4151NGC 7469 10° -NGC 4395 🤣 10^{-1} 1010⁴⁰ 10⁴³ 10⁴⁵ 1044 10⁴⁷ 10^{41} 10⁴² 10⁴⁶ $\lambda L_{\lambda}(1350\text{\AA}) \text{ (erg s}^{-1})$

Adapted from Chelouche, Daniel, Kaspi 2012

Points confirm and accentuate the decrease in slope suggested by Kaspi et al. 2007

- tow has the same order of magnitude of the CIV delay of S5 0836+71
- torv is factor of 2.4 larger than torus
- There appears to be a virial relationship between CIII] and CIV
- We estimated the mass of PG 1247+268, the most luminous QSO ever analyzed with RM
- If the estimate is maintained, the CIV lag will confirm and accentuate the decrease in slope of Luv-Rciv relation.

PG 1247+268: Мвн

Г

$$M_{\rm BH}=rac{fR\Delta V^2}{G}$$
f = 3 (Netzer 1990):

$$\Delta V_{\sigma_{line}}(CIII] - rms \ spectrum) = 1533 \pm 583 \ km/s$$

 $t_{lag \ CIII} = 252^{+39}_{-25} \ days$
 $\Delta V_{FWHM}(CIII] - mean \ rms \ spectrum) = 3344 \pm 1976 \ km/s$

$$M_{Rev}(CIII] - \sigma_{line}) = 3.5^{+4.2}_{-2.3} \cdot 10^8 M_{\odot}$$

 $M_{Rev}(CIII] - FWHM) = 4.1^{+7.9}_{-3.5} \cdot 10^8 M_{\odot}$

$$\Delta V_{\sigma_{line}}(CIV - rms \ spectrum) = 2012 \pm 453 \ km/s \\ t_{lag \ CIV} = 107^{+32}_{-54} \ days \\ \Delta V_{FWHM}(CIV - rms \ spectrum) = 4346 \pm 1013 \ km/s \\ M_{Rev}(CIV - FWHM) = 3.0^{+3.0}_{-2.1} \cdot 10^8 M_{\odot}$$

SPEAR simulations

