

9th Serbian Conference on Spectral Line Shapes in Astrophysics Banja Koviljaca, Serbia, May 13-17, 2013

The intrinsic Baldwin effect in a sample of AGNs with broad lines

Nemanja Rakić

Luka Č. Popović Wolfram Kollatschny Giovanni La Mura Dragana Ilić

Baldwin Effect

log(L_cnt)

Log L(line)

log(L_cnt)

Gllobal and Intrinsic Baldwin Effect

A bit of history of Beff

- Jack A. Baldwin 1977 showed
- strong correlation between EW and L (1450Å)
- Carswell and Smith 1978 refered that as Baldwin effect.
- Pogge and Peterson in1992 dubbed "intristic"Baldwin effect for individualvariable AGNS

- Its shown for almost all the lines in UV/optical
- Progress is going on also in X-ray in last couple of years
- Kinney et al. (1990) intrinsic Beff has a steeper slope than global
- M.R. Goad, K.T. Korista and C. Knigge in 2004 reported non constant slope of the Intrinstic Baldwin Effect for Hbeta line NGC 5548

Physical origin

Eddington ratio (Baskin & Laor 2004) SED (proposed by many authors) Mass of the BH (Warner et al. 2003)

Non constant slope

Found in:

- NGC 4151 (Kong et al., 2006, and this thesis)
- Fairall 9 (Wamsteker & Colina, 1986; Osmer & Shields, 1999),
- NGC 5548 (Goad et al., 2004),

University of Belgrade Georg-August University of Göttingen

Erasmus Mundus Master Course Astromundus

MASTER THESIS

Variability of AGN Spectral Properties -Intrinsic Baldwin Effect-

Author:

Nemanja Rakić

Dr. Luka Č. Popović Dr. Wolfram Kollatschny

Supervisors:

Belgrade/Göttingen, July 2012

Data and Results

(Shapovalova et al., 2004, 2008, 2010)

Seyfert 1.5 galaxy

Table 5: The parameters of the intrinsic Beff in NGC 5548. r is the Pearson coefficient of correlation, P is the statistical significance, β the slope of the least square-fit, and log A constant of the linear fit. P 1 + P 2 represents full data range, and P 1 only period 1

line	r	Р	β	$\log A$	data set
$H\alpha$	0.102	0.64	-	-	P 1 + P 2
	-0.723	0.023	-0.33	-3.77	P 1
110	0.19	0.08	-	-	P 1 + P 2
$\mathbf{n}\rho$	-0.40	0.0017	-0.15	-1.62	P 1

Shapovalova et al. (2004)

3C390.3

FR II radio galaxy

Pearson correlation coefficient has been calculated separately for each period, as well as the least square fit. Results that we obtained are the following: r = -0.414 with P = 8 × 10-5, $\beta = -0.391$ and constant log A =-3.575 for period 1 and for period 2 r = -0.463 with P = 0.002, B = -0.316 and log A = -2.380

Shapovalova et al. (2008)

Malkov et al. (1997)

Table 6: The coefficients of the intrinsic Beff in NGC 4151 are summarized. r is the Pearson coefficient of correlation, P is the statistical significance, β the slope of the least square-fit, and log A constant of linear fit. Sh represents data obtained from Shapovalova et al.] (2008) and Ma data from Malkov et al.] (1997a).

	T !		D	0	1	data asta			
	Line	r	Р	ρ	log A	data sets			
		-0.971	8×10^{-40}	-0.626	-7.835	period 1 Sh			
	Ца	-0.957	2×10^{-40}	-0.569	-7.054	period 2 Sh			
		-0.922	10^{-57}	-0.498	-5.919	p1+p2 Sh			
	nα	-0.979	10^{-26}	-0.663	-8.353	period 1 Ma			
		-0.969	10^{-39}	-0.699	-8.888	period 2 Ma			
		-0.972	3×10^{-65}	-0.612	-7.557	p1+p2 Ma			
	${ m H}eta$	-0.860	7×10^{-27}	-0.310	-3.663	period 1 Sh			
		-0.657	9×10^{-19}	-0.307	-3.666	period 2 Sh			
		-0.748	10^{-33}	-0.262	-2.948	p1+p2 sh			

CONCLUSIONS 1

1. In all three objects in some period the intrinsic Beff may be present, but significant Beff can be detected only in NGC 4151. Also in 3C390.3 in the period of high flux state.

2. In both data sets taken from the Shapovalova et al. (2008) and Malkov et al. (1997a) we found a strong intrinsic Baldwin effect in NGC 4151. In addition we found that the slope of the intrinsic Beff is changing in the time.

Photoionization Simulations for the Discriminating Astrophysicist Since 1978

Cloudy is a spectral synthesis code designed to simulate conditions in interstellar matter under a broad range of conditions.

11	.0_113.in 🛞										
1	table AGN										
2	luminosity 41.0 total										
3	radius 16.528										
4	hden 11										
5	stop temperature 8000										
6	iterate to convergence										
7	print last										
8	punch continuum "blr41.0_113.con" units Angstrom last										
9											

< Applications	Pla	aces 🤅	System 🙋 🛄 9	33 MHz [🚿		<u>)</u> 🖗 🖇	<u></u>	USA 📋	4) 🖂	3	🥑 24 °C	7	2 AND	Fri Jul	27, 9:54 AM	🖄 yukawa	
41.0_113.out (~/master/cloudyplay/1) - gedit																	
<u>File Edit View</u>	<u>S</u> ea	rch <u>T</u> o	ols <u>D</u> ocuments	<u>H</u> elp													
👍 譮 Open 🗸	<u>_</u>	Save	📇 🐀 Und	do 🔗 🛛													
File Browser		₿ 41.0)_113.in 🛛 🖹 41	0_113.out													
♦ × ♦ ×	~	225	H 1 4.466m	36.843	0.0161	Ca B	9546A	37.412	0.0597	Ca B 82374	35.842	0.0010	ο ΤΟΤΙ	1860A	36.200		î
1		226	H 1 4.466m	36.597	0.0091	Ca B	9229A	37.271	0.0431	Ca B 75934	35.786	0.0014	Al 3	3 1855A	36.009		
▷ 📄 101	$\hat{\frown}$	227	H 1 4.466m	36.195	0.0036	Ca B	9015A	37.136	0.0316	Ca B 71784	35.733	0.0012	e Al S	3 1863A	35.750		
 grafik pokusaj 	8	228	H 1 5.834m	36.294	0.0045	Ca B	8863A	37.010	0.0236	Ca B 68914	35.676	0.001	тоті	2335A	38.135		
41.0_103.in		229	H 1 5.834m	36.694	0.0114	Ca B	8750A	36.893	0.0181	Ca B 3.091m	35.763	0.0013	Si 2	2334A	37.468		
41.0_103.out		230	H 1 5.834m	36.757	0.0132	Ca B	8665A	36.785	0.0141	Ca B 1.874m	35.675	0.001	Si 2	2350A	37.356		
41.0_108.0ut		231	H 1 5.834m	36.662	0.0106	Ca B	8598A	36.685	0.0112	He 2 303.84	38.070	0.2714	Si 2	2344A	37.409		
41.0_113.in		232	0.0592 H 1 5.834m	36.451	0.0065	Ca B	8545A	36.592	0.0090	He 2 256.34	36.457	0.0066	i Si Z	2336A	37.766		
41.0_113.out	:	233	0.1347 H 1 5.834m	36.133	0.0031	Ca B	8502A	36.505	0.0074	He 2 243.04	36.276	0.0044	Si 2	2 1814A	37.972		
41.0_118.out		234	0.2167 H 1 5.834m	35.672	0.0011	Ca B	8467A	36.423	0.0061	He 2 237.34	36.134	0.003	Si 2	2 1531A	36.839		
41.0_123.in		235	0.0160 H 1 7.383m	36.125	0.0031	Ca B	8438A	36.347	0.0051	He 2 234.4	36.118	0.0030) Si 2	2 1308A	36.191		
41.0_123.0ut		236	0.0036 H 1 7.383m	36.525	0.0077	Ca B	8413A	36.274	0.0043	He 2 232.64	36.116	0.003) Si 2	2 1263A	36.620		
41.0_128.out		237	0.0096 H 1 7.383m	36.588	0.0090	Ca B	8392A	36.206	0.0037	He 2 231.54	36.174	0.003	ο τοτι	1888A	36.557		
41.0_133.in		238	0.0083 H 1 7.383m	36.501	0.0073	Ca B	8374A	36.141	0.0032	He 2 230.74	36.256	0.0042	si 3	3 1892A	36.557		~
41.0_138.in		yukawa	a@quantum:~\$							0.0.0							
41.0_138.out				J													
A1 2 103 in																	
Match Filename					_												\leq
🗋 🖶 🖻 🔞		🔋 Pytl	hon Console 🐉 S	hell Output	Terminal	Tools											
												F	Plain Text 🗸	Tab Width	: 8 × Ln 1	Col 1	INS

CLOUDY

H density 10⁹

H density 10¹⁰

H density 10^11

H density 10¹²

H density 10^10

H density 10⁹

H density 10¹²

Remarks about CLOUDY

some kind of wave-like effect, in the sense that

-increasing the continuum luminosity at first increases line EW, which, after a limiting value, starts decreasing;

 inversion occurs at high luminosity for faraway gas;

 low density gas is subject to discontinuously dropping EW, whereas high

density gas has a discontinuity in the range of increasing EW low density gas might be kept ionized and hot by strong radiation fields, causing a sharp drop off in line luminosity close to the source

-high density gas is optically thick for lines, too, so they tend to be

weak unless the source is powerful or close enough to ionize a significant

fraction of the gas

Interpretation of the Baldwin Effect (and of its different slopes in line core-wings) might be given as a combination of gas structure and density for a variable source (intrinsic case) or for sources of different power (global case)

