Self-consistent polarized radiative transfer

Jiří Štěpán

May 16, 2013

Goal: To decipher the *magnetism* which affects the whole structure of the atmosphere (overall energy balance, propagation of waves, heating of the corona, \ldots).

Goal: To decipher the *magnetism* which affects the whole structure of the atmosphere (overall energy balance, propagation of waves, heating of the corona, \ldots).

Methods: Spectropolarimetry and modeling of non-LTE chromospheric lines, taking into account *scattering polarization* and its modification via the *Hanle effect* (the way to obtain *quantitative* information on the magnetic fields).

Goal: To decipher the *magnetism* which affects the whole structure of the atmosphere (overall energy balance, propagation of waves, heating of the corona, \ldots).

Methods: Spectropolarimetry and modeling of non-LTE chromospheric lines, taking into account *scattering polarization* and its modification via the *Hanle effect* (the way to obtain *quantitative* information on the magnetic fields).

Outline of the talk:

- How does the radiation transfer in optically thick media affect the shapes of intensity and polarization of a spectral line.
- **2** Magnetic field diagnostics via spectropolarimetry
- On the role of 3D polarized radiative transfer (the code PORTA).

Equations of the light-atom interaction

Statistical equibrium equations (SEE)

- Local radiation field $\boldsymbol{I}(\nu, \boldsymbol{n}) = (I, Q, U, V)^{\mathrm{T}}$
- Collisions
- Magnetic field

 $\Downarrow \Downarrow \Downarrow \Downarrow$

Atomic density matrix ρ_Q^K

Equations of the light-atom interaction

Radiative transfer equations (RTE)

- From local ρ_Q^K :
- Emission coefficients $\boldsymbol{\epsilon}(\nu, \boldsymbol{n}) = (\epsilon_I, \epsilon_Q, \epsilon_U, \epsilon_V)^{\mathrm{T}}$
- Absorption coefficients

$$\boldsymbol{K}(\nu, \boldsymbol{n}) = \begin{pmatrix} \eta_{I} & \eta_{Q} & \eta_{U} & \eta_{V} \\ \eta_{Q} & \eta_{I} & \rho_{V} & -\rho_{U} \\ \eta_{U} & -\rho_{V} & \eta_{I} & \rho_{Q} \\ \eta_{V} & \rho_{U} & -\rho_{Q} & \eta_{I} \end{pmatrix}$$

 $\Downarrow \Downarrow \Downarrow \Downarrow$

$$\frac{d}{d\tau}\boldsymbol{I}(\boldsymbol{\nu},\boldsymbol{n}) = \boldsymbol{S}(\boldsymbol{\nu},\boldsymbol{n}) - \boldsymbol{K}'\boldsymbol{I}(\boldsymbol{\nu},\boldsymbol{n})$$

where

$$\boldsymbol{S} = \boldsymbol{\epsilon}/\eta_I, \qquad d\tau = \eta_I \, ds, \qquad \boldsymbol{K}' = \boldsymbol{K}/\eta_I$$

Statistical equilibrium equations (SEE)

- Local radiation field $\boldsymbol{I}(\nu, \boldsymbol{n}) = (I, Q, U, V)^{\mathrm{T}}$
- Collisions
- Magnetic field

 $\Downarrow \Downarrow \Downarrow \Downarrow$

Atomic density matrix ρ_Q^K

Integrated signal along the line of sight.

Example:

Isothermal atmosphere, constant source function S $(r = 10^{-2}, S = 0.1B_{\rm P})$

Example: Isothermal atmosphere, constant source function S ($r = 10^{-2}$, $S = 0.1B_{\rm P}$)

How to determine S and K: Limitting cases

Optically thin medium

Optically thin, known external illimunation (solar corona).

How to determine S and K: Limitting cases

Optically thin medium

Optically thin, known external illimunation (solar corona).

Local-thermodynamical equilibrium (LTE)

Dense plasmas, S and K from local thermal conditions (solar photosphere). The self-consistent non-LTE problem

 $\rho_Q^K(\boldsymbol{x})$ is coupled, via radiation transfer, with $\rho_Q^K(\boldsymbol{y})$

non-linear and non-local: Need of iterative solution.

(See Mihalas (1978) for the unpolarized theory)

Jiří Štěpán (AIAS)

Height of formation of a spectral line

Jiří Štěpán (AIAS)

Height of formation of a spectral line

Anisotropy of radiation in an isothermal atmosphere Observation near the stellar limb:

May 16, 2013 11 / 23

Anisotropy of radiation in an isothermal atmosphere

The Hanle effect of ${\rm H}\alpha$ line of the average Sun

(Harvey, 1978)

Observation vs synthesis in a semi-empirical FAL-C model atmosphere:

The Hanle effect of ${\rm H}\alpha$ line of the average Sun

(Harvey, 1978)

Observation vs synthesis in a semi-empirical FAL-C model atmosphere:

The Hanle effect of $H\alpha$ line of the average Sun

(Harvey, 1978)

Observation vs synthesis in a semi-empirical FAL-C model atmosphere:

$\mathrm{H}\alpha\mathrm{:}$ spatially resolved observation

(Courtesy of R. Ramelli & M. Bianda, IRSOL)

Jiří Štěpán (AIAS)

$H\alpha$: spatially resolved observation

H α : spatially resolved observation

$H\alpha$: spatially resolved observation

 $H\alpha$ as probe of magnetic field gradients

Jiří Štěpán (AIAS)

Polarized radiative transfer

May 16, 2013 15 / 23

• Invalid for spatially localized/global structures.

More realistically:

- Invalid for spatially localized/global structures.
- Non-linear molecular abundances with temperature

More realistically:

- Invalid for spatially localized/global structures.
- Non-linear molecular abundances with temperature
- Often cannot fit line intensity profiles and CLV (anisotropy of convective motions etc.)

More realistically:

- Invalid for spatially localized/global structures.
- Non-linear molecular abundances with temperature
- Often cannot fit line intensity profiles and CLV (anisotropy of convective motions etc.)

 Tuning the model parameters to fit the line → other lines get worse

- Invalid for spatially localized/global structures.
- Non-linear molecular abundances with temperature
- Often cannot fit line intensity profiles and CLV (anisotropy of convective motions etc.)

- Tuning the model parameters to fit the line → other lines get worse
- Need to study the role symmetry breaking effects (to disentangle them from the action of magnetic fields)

- Invalid for spatially localized/global structures.
- Non-linear molecular abundances with temperature
- Often cannot fit line intensity profiles and CLV (anisotropy of convective motions etc.)

- Tuning the model parameters to fit the line → other lines get worse
- Need to study the role symmetry breaking effects (to disentangle them from the action of magnetic fields)
- Does not reflect the physical reality

Jiří Štěpán (AIAS)

Polarized radiative transfer

- General-purpose non-LTE transfer in 3D based on quantum theory of spectral line polarization
- Both intensity and polarization is considered
- Optical pumping in multilevel atomic systems
- Atomic polarization with the joint action of the Hanle and Zeeman effects

- General-purpose non-LTE transfer in 3D based on quantum theory of spectral line polarization
- Both intensity and polarization is considered
- Optical pumping in multilevel atomic systems
- Atomic polarization with the joint action of the Hanle and Zeeman effects

- General-purpose non-LTE transfer in 3D based on quantum theory of spectral line polarization
- Both intensity and polarization is considered
- Optical pumping in multilevel atomic systems
- Atomic polarization with the joint action of the Hanle and Zeeman effects
- Non-linear multigrid method

- General-purpose non-LTE transfer in 3D based on quantum theory of spectral line polarization
- Both intensity and polarization is considered
- Optical pumping in multilevel atomic systems
- Atomic polarization with the joint action of the Hanle and Zeeman effects
- \bullet Massive parallelization via the Snake Algorithm: Scaling $\sim P$

3D MHD snapshot of the solar atmosphere

(Leenaarts et al, 2012; BIFROST code)

3D MHD snapshot of the solar atmosphere

(Leenaarts et al, 2012; BIFROST code)

Application to the solar ${\rm Ly}\alpha$

Application to the solar $Ly\alpha$

6.2

5.5

4.8

4.1

- $\bullet~25\,\mathrm{GB}$ per snapshot
- About 10⁹ unknowns, 10¹⁵ radiative quantities
- Computing time $1 \mu s$ per Stokes parameter⁻¹frequency⁻¹angle⁻¹
- Serial time: ~ 10 years
- Parallel solution at the LaPalma supercomputer (1000 CPUs):
 - $\sim 1 \, \mathrm{week}$

Disk-center emergent radiation

(Observation: Vourlidas et al. 2010)

Disk-center emergent radiation

(Observation: Vourlidas et al. 2010)

Disk-center emergent radiation

(Observation: Vourlidas et al. 2010)

Jiří Štěpán (AIAS)

Center-to-limb variation of polarization $\underset{\scriptscriptstyle Q^{||}(\mu=1)}{\mu=1}$

Center-to-limb variation of polarization $\mu = 1$

21 / 23

May 16, 2013

Polarized radiative transfe

The CLASP mission

- Approved NASA & JAXA sounding rocket experiment
- Lunch 2014–2015

The CLASP mission

- Approved NASA & JAXA sounding rocket experiment
- Lunch 2014–2015
- Goal #1: First detection of linear polarization of a FUV line (Lyα)

The CLASP mission

- Approved NASA & JAXA sounding rocket experiment
- Lunch 2014–2015
- Goal #1: First detection of linear polarization of a FUV line (Lyα)
- Goal #2: Estimate magnetization of the upper solar chromosphere and the transition region

Conclusions

- Line formation heights in very corrugated surfaces
- Multilevel non-LTE 3D modeling in increasingly realistic models of the solar atmosphere is the step to be made now
- 3D modeling is necessary for spatially averaged observations and even more the high-spatial resolution ones
- Comparison of 3D models and high-resolution observations (both ground based and space born: ATST, EST, SOLAR-C)
- Both Hanle and Zeeman (He I 10830, Ca II IR triplet, H α , Mg II k, ...)