Invited lecture

ATOM-RYDBERG ATOM PROCESSES IN THE STELLAR ATMOSPHERES: DWARF ATMOSPHERES, QUIET SUN AND SUNSPOTS

Vladimir A. Srećković¹, Anatolij A. Mihajlov¹, Ljubinko M. Ignjatović¹ and Milan S. Dimitrijević^{2,3,4}

¹University of Belgrade, Institute of Physics, P. O. Box 57, 11001, Serbia ²Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia ³IHIS-Technoexperts, Bežanijska 23, 11080 Zemun, Serbia ⁴Observatoire de Paris, 92195 Meudon Cedex, France E-mail: vlada@ipb.ac.rs

The rate coefficients of the chemi-ionization processes in $H(1s) + H^*(n,l)$ and $He(1s2) + He^*(n,l)$ collisions, taking into account the influence of the corresponding (n-n')-mixing processes, are determined for the temperature range characteristic for the solar and DB white-dwarf atmospheres.

The theory and modeling is done on the basis of the method described in Mihajlov *et al.* (2015). The direct calculations of the chemi-ionization rate coefficients are carried out for the models of the quiet Sun, sunspot and DB white-dwarf atmospheres.

It is demonstrated that the inclusion of (n-n') mixing processes in the calculation influences the values of chemi-ionization rate coefficients significantly in all examined cases.

References

Mihajlov, A. A., Srećković, V. A., Ignjatović, Lj. M., Klyucharev, A. N., Dimitrijević, M. S., Sakan, N. M.: 2015, *Journal of Astrophysics and Astronomy*, **36**, 3.