

Федеральное государственное бюджетное учреждение науки Специальная астрофизическая обсерватория Российской академии наук

Gaussian processes for

long-term observed continuum and broad line light curves of E1821+643

A. Kovačević¹, L. Č. Popović², A. I. Shapovalova³ & D. Ilić¹ ¹Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia ² Astronomical Observatory Belgrade, Serbia, ³ Special Astrophysical Observatory of the RAS, Russia

Tuesday, May 31, 16

Fig. 12.— Comparison between the GPR generated (dashed line) and observed light curves (circles with errorbars) of the continuum at 5100Å, H β , the continuum at 4200Å, and H γ (from top to bottom). The shaded band represents 95% confidence interval (CI) for the GPR predicted curve.

Shapovalova (a) al+16 Task: Periodicity? P1~4500 days P2~2000 days P3~1300-1400 days

	Table 8.	Detected	flare-like e	events in pl	notometric data.
Ν	UT-Date	MJD 2400000	Amplitude [m]	Imax/Imin	maxJD(i+1)-maxJD(i) [days]
1	2005Nov28	53703	0.54	1.6	1066 (2-1)
2	2008Oct29	54769	0.10	1.1	1030 (3-2)
3	2011Aug26	55799	0.17	1.17	1002 (4-3)
4	2014May23	56801	0.10	1.1	

Note. — Col.(1): number of flare-like event; Col.(2): UT-date; Col.(3): Modified Julian Date; Col. (4): approximate amplitude between maximum and minimum (in magnitudes) for a flare-like event; Col.(5): the ratio of the maximum to minimum intensity; Col.(6): he difference in days between the two relevant events (in parentheses).

Nipoti & Binney +05 AGN Variability is large Luminosity $L(t) >>0, \forall t$ The natural variable to model is I(t)=In(L) and **Default assumption is** I(t)∈Gaussian Processes (GP)

What is GP?

multiple perspectives for understanding a GP:

1. As an *infinite dimensional Gaussian random variable* with a specified co-variance structure. This view tells you what it is and what its properties are. But this doesn't explain how people make use of Gaussian process models.

Weight space view: The predictions of a Gaussian process are weighted averages of the training target values. However, the weighting scheme is not simple as in the case of locally weighted regression. For more information on this see <u>Sollich's Paper</u>.
The function space perspective: This is a tricky one for the uninitiated. A Gaussian process is a distribution over functions. Finite dimensional Gaussians are distributions over finite dimensional vectors. Infinite dimensional Gaussians (Gaussian Processes) are distributions over infinite dimensional vectors (or equivalently, functions).

What is GP (cont'd)?

Gaussian distribution

* is a distribution over **vectors**

*specified by mean and a covariance (vectors) $x \sim G(\mu, \Sigma)$

*the position of the random variables x_i plays the role of the index

Gaussian process

* is a distribution over **functions**

*specified by mean function and a covariance function f~GP(m, k)

*the argument x of the random function f(x) plays the role of the index

Defining GP

by mean function and a covariance function $f \sim GP(m, k)$

mean function is defined m~0 different covariance functions

RBF kernel

$$K_{\rm SE}(x, x') = \exp\left(-\frac{||d||^2}{2l^2}\right)$$

RQ kernel

$$K_{\rm RQ}(x, x') = (1 + |d|^2)^{-\alpha}, \quad \alpha \ge 0$$

Std. Periodic kernel

$$K_{\mathrm{P}}(x, x') = \exp\left(-\frac{2\sin^2\left(\frac{d}{2}\right)}{l^2}\right)$$

COVARIANCE

88.0

RBF+Std.Per(4500)+ Std.per(2000)+Std.per(1400)

RQ+Std.Per(4500)+ Std.per(2000)+Std.per(1400)

Brownian+Std.Per(4500)+ Std.per(2000)+Std.per(1400)

Continuum 5200

F_{cnt} (5100)

(Flux)

RBF+StdPerI+StdPer2+StdPer3

ML - 132 PI ~4800days P2 ~2300days P3~1600 days RMSE 0.062 S~1.00 ML -133 PI ~3900days P2 ~2300days P3~1200 days RMSE 0.062 S~1.02

time(MJD)

RQ+StdPerI+StdPer2+StdPer3 Brownian+StdPerI+StdPer2+StdPer3

95%CI

ML -127 PI ~3800days P2 ~1800days RMSE 0.047 S~1.02 Hβ

Tuesday, May 31, 16

ML -70 PI ~5000days P2 ~2200days	ML -62 PI ~5000days P2 ~2200days	ML -63 PI ~5000days P2 ~2100days P3 ~1500 days
RMSE 0.03 S~1.00	RMSE 0.06 S~I.I	RMSE 0.07

RQ+StdPerI+StdPer2

ML -70 PI ~4800days P2 ~2500days

RMSE 0.03 S~1.85

Brownian+StdPerI+StdPer2+StdPer3

ML -64 PI ~4000days P2 ~1900days

RMSE 0.04 S~I.44

Key points

Mixture of aperiodic (RBF,RQ,Brown) and periodic (Standard Periodic) kernel models indicates high periodicity ratio S ~1 and presence of periodic signals in both continuum and Hgamma emission line

Two periodic signals PI~4800 days and P2 ~2000 days are persisten in continuum 5200 and 4200 and Hγ emission line.

The third periodic signal P3~1400 days are not persistent: it is very weakly presented in both continuums and completly lost in Hgamma line. Indicating that information about it has been erased by processes originating at the distances of Hgamma. Because of this, 1400 days signal can be caused by some process like flares within the disk, originating closer to the BH.

Any information about periodic signals are completely erased from Hbeta line due to large noise. Since the time lag Hbeta > time lag Hgamma, it implaies that the Hbeta line originates at larger radii than Hgamma, so at the distance of Hbeta line can exist some violent processes destroying all periodic signals

Acknowledgments

This work was supported by the Ministry of Education and Science of Republic of Serbia through the project Astrophysical Spectroscopy of Extra- galactic Objects (176001) and RFBR (grants N12-02-01237a, 12-02-00857a, 12-02-01237a,N15- 02-02101)