10th SBAC

Simplified Model of Line Profile Variability from Eccentric Orbits of Supermassive Binary Black Hole Systems

Smailagić Marijana, Bon Edi

Astronomical Observatory of Belgrade, Serbia

Outline

- Introduction and motivation
- Model
- Results for different parameters
- Conclusions

Introduction and motivation

• Observational evidence:

- or via periodic variability in light curves and line shapes (but often there exist alternative explanations)

• Simulations:

- a number of simulations demonstrated that spiral arms form in binary black hole systems

- spirals, circumbinary disk, low-density cavity

• Expectations from models:

- it is expected that binary black holes form as a result of mergers between galaxies,

and that mergers are common in the Universe

Introduction and motivation

How to explain variability of active galactic nuclei?
 Lewis et al. 2010

Introduction and motivation

 Simulated spirals of gas inflowing into 2 black holes (Gold et al. 2013)

Model

1) BHs - Masses M_{tot}, Q=M₁/M₂

- Emissivity: $q_{_{1,2}}$ $\epsilon \sim r_{BH1}^{-q_1} + r_{BH2}^{-q_2},$
- Orbit: T, e, w

3) velocity

- Kepler
 equations
 of motion
- plus local turbulences

2) Spirals of gas and CB disk

 geometry of spirals: angle, thickness, (length)

$$R_2 = r_{02} e^{B\varphi}$$

 position of CB disk: from simulations

4) Angle of inclination i

$$r_{1,2}\sin i = (1.3751 \times 10^4)(1-e^2)^{1/2}K_{1,2}T$$
 km,

$$M_{1,2}\sin i = (1.0361 \times 10^{-7})(1-e^2)^{3/2}(K_1+K_2)^2K_{2,1}T M_{\odot}$$

r_{01,02} ~ 0.001 - 0.005 pc

T = 15 *yr i* = 45^o

$$M = 10^8 M_{Sun}$$
 $M_1/M_2 = 0.5$
 $e = 0.2$ $w = 0^{\circ}$
 $T = 15 yr$ $i = 45^{\circ}$

 $M = 10^8 M_{Sun}$ $M_1/M_2 = 0.33$ e = 0 $w = 0^0$ T = 15 yr $i = 45^0$

 $M = 10^8 M_{Sun}$ $M_1/M_2 = 0.33$ e = 0 $w = 0^0$ T = 15 yr $i = 45^0$

T = 15 *yr i* = 45^o

$$M = 10^8 M_{Sun}$$
 $M_1/M_2 = 0.5$
 $e = 0.2$ $w = 0^0$
 $T = 15 yr$ $i = 45^0$

Line profiles for different total masses for circular orbits and equal masses

10⁷

10⁹ M_{Sun}

FWHM as a function of mass in black holes

Variability of centroid shift for different mass ratios

Variability of flux for different mass ratios and eccentricities

Average centroid velocity for different mass ratios and eccentricities

Results for different orientations of orbits

150°

300

phase [deg]

400

500

600

O⁰

60⁰

Conclusions

- For equal masses and for circular orbits flux is constant and line profiles are symmetric and not shifted
- More massive BBHs show larger FWHMs and double peaks
- As mass increases, average FWHM and amplitude in FWHM variability increase
- Variability in centroid shift increases when difference between masses of black holes increases, and is almost constant for different eccentricities
- The variability in flux is higher when eccentricities and difference between masses of black holes are higher. For mass ratios Q>0.45, the variability in flux is almost independent on Q.
- Average centroid velocities are higher for more eccentric orbits
- Smailagić & Bon, 2015, JapA, 36, 513 (for circular orbits and equal masses)