Fluctuating governing parameters in galaxy dynamo

E.A.Mikhailov, V.V.Pushkarev
M.V.Lomonosov Moscow State University
Russian Federation

X Serbian-Bulgarian Astronomical Conference Belgrade, Serbia

Introduction

- Some galaxies have magnetic fields of several $\mu \mathrm{G}$.
- Their evolution is described by the so-called dynamo theory (Beck et al., 1996).
- It is important to describe the magnetic field in galaxies with such processes as star formation, supernova explosions, outflows from stars etc.

Dynamo mechanism

- The dynamo mechanism is based on joint action of alpha-effect and differential rotation.
- Alpha-effect transforms the angular component of the field to the radial one:

$$
B_{\varphi} \xrightarrow{\alpha} B_{r}
$$

- Differential rotation transforms the radial field to angular:

$$
B_{\varphi} \xrightarrow{\Omega} B_{r}
$$

Basic equation

- The field is described by Steenbeck - Krause Rädler equation:

$$
\frac{\partial \mathbf{B}}{\partial t}=\operatorname{curl}[\mathbf{v}, \mathbf{B}]+\operatorname{curl}(\alpha \mathbf{B})+\eta \Delta \mathbf{B}
$$

no-z approximation

- The galaxy disc is very thin.
- We can neglect the z-component of the field.
- The z-derivatives of the magnetic field can be replaced by algebraic expressions (Moss, 1995; Phillips, 2001):

$$
\frac{\partial^{2} B_{r, \varphi}}{\partial z^{2}} \approx-\frac{\pi^{2}}{4 h^{2}} B_{r, \varphi} .
$$

System of equations

- The equations will be rewritten as:

$$
\begin{aligned}
& \frac{\partial B_{r}}{\partial t}=-\frac{\alpha}{h} B_{\varphi}-\eta \frac{\pi^{2}}{4 h^{2}} B_{r}+\eta \Delta_{r} B_{r} \\
& \frac{\partial B_{\varphi}}{\partial t}=r \frac{\partial \Omega}{\partial r} B_{r}-\eta \frac{\pi^{2}}{4 h^{2}} B_{\varphi}+\eta \Delta_{r} B_{\varphi}
\end{aligned}
$$

- h is the half-thickness of the disc, α is the alpha-effect coefficient, $\eta=l v / 3$ is the turbulent diffusivity coefficient.

Galaxies with active processes

- Usually averaged values of the coefficients are used.
- This approach is useful for "calm" galaxies, where the kinematical characteristics are nearly the same in different parts of galaxies.
- If there are active star formation, supernova explosions etc, the kinematical characteristics can differ very much.

Random coefficients

- The HII regions usually exist for quite small times (about 10^{7} years). Their location can be described by random laws.
- Some works described the dynamo model with random alpha-effect (Mikhailov \& Modyaev, 2015) and with random injections of the magnetic fields (Moss et al., 2015).

Diffusivity

- We describe the equations with random diffusivity coefficient.
- For "calm" regions $v_{0}=10 \mathrm{~km} / \mathrm{s}$, for HII regions $v_{1}=30 \mathrm{~km} / \mathrm{s}$.
- So for the diffusivity coefficient $\eta=l v / 3$ we have:

$$
\eta_{1}=3 \eta_{0}
$$

Dimensionless form

- We can rewrite the equations, measuring time in h^{2} / η_{0}, and neglect the diffusion in disc plane:

$$
\begin{aligned}
& \frac{d B_{r}}{d t}=-R_{\alpha} B_{\varphi}-k B_{r} ; \\
& \frac{d B_{\varphi}}{d t}=R_{\omega} B_{r}-k B_{\varphi} .
\end{aligned}
$$

- R_{α} characterizes alpha-effect, R_{ω} characterizes differential rotation, k characterizes turbulent diffusion.

k coefficient

- The k coefficient takes random values:

$$
k=\left\{\begin{array}{l}
7.5 \text { with probability } p ; \\
2.5 \text { with probability }(1-p) .
\end{array}\right.
$$

- The coefficient is constant for $\Delta t=0.01$ and after that renews.
- p characterizes the intensity of active processes.

Theoretical approximations

- The field grows exponentially with velocity:

$$
\gamma=-k \pm \sqrt{R_{\alpha} R_{\omega}} .
$$

- The main features are described by the highest value.
- If we take $R_{\alpha}=1, R_{\omega}=10$, the values of velocities for k_{0} and k_{l} will be:

$$
\gamma_{0}=0.66, \gamma_{1}=-4.33
$$

Magnetic field for large time

- The magnetic field will be:

$$
B(n \Delta t)=B(0) \exp (\gamma(0) \Delta t) \ldots \exp (\gamma((n-1) \Delta t) \Delta t)
$$

- With probability $\binom{m}{n} p^{m}(1-p)^{n-m}$ the field is:

$$
B(n \Delta t)=B(0) \exp \left(m \gamma_{1} \Delta t\right) \exp \left((n-m) \gamma_{0} \Delta t\right)
$$

- Using these values, we can average the field and its square.

Different momentums

- Mean value:

$$
<B(n \Delta t)>=B(0) \exp \left(\gamma_{0} n \Delta t\right)\left(1-p+p \exp \left(\left(\gamma_{1}-\gamma_{0}\right) \Delta t\right)\right)^{n}
$$

- Mean-square field:

$$
<B^{2}(n \Delta t)>1 / 2=B(0) \exp \left(\gamma_{0} n \Delta t\right)\left(1-p+p \exp \left(2\left(\gamma_{1}-\gamma_{0}\right) \Delta t\right)\right)^{n / 2}
$$

Estimeates for velocities of different momentums

- Typical realization:

$$
\lambda_{0}=0.66-5 p
$$

- Mean field:

$$
\lambda_{1}=0.66-5 p+12.5 p(1-p) \Delta t
$$

- Mean-square field:

$$
\lambda_{2}=0.66-5 p+25 p(1-p) \Delta t
$$

- Higher momentums grow faster than lower ones - intermittency effect.

Critical value (theoretical estimates)

- Assuming $\lambda_{0}=0$, we will obtain $p_{c r}=0.13$.
- $\lambda_{0}>0$ if $p>0.13$ (the field grows).
- $\lambda_{0}<0$ if $p>0.13$ (the field decays).

Numerical results ($p=0.1$)

Various probabilities

Growth rates

	Numerical values			Theoretical estimates		
p	λ_{0}	λ_{1}	λ_{2}	λ_{0}	λ_{1}	λ_{2}
0	0.671	0.680	0.681	0.662	0.662	0.662
0.1	0.182	0.180	0.181	0.162	0.174	0.185
0.2	-0.366	-0.300	-0.280	-0.338	-0.318	-0.298
0.5	-1.86	-1.79	-1.76	-1.84	-1.81	-1.78

Critical value (numerical)

- If $p<0.16$, the field grows.
- If $p>0.16$, it decays.
- The critical value ($p_{c r}=0.16$) is higher than for rough estimates.

Star formation and our model

- The probability p can be associated with the fraction κ of the HII regions in the galaxy. For rough approximation $\kappa \approx p$.
- If we study the star formation, it can be shown (e.g. Mikhailov, 2014), that

$$
\kappa \approx 12 \Sigma_{S F R}
$$

(star formation density measured in $\mathrm{M}_{\odot} / \mathrm{yr} \mathrm{kpc}^{2}$)

Growth rates - in dimensional form

	Numerical values			Theoretical estimates		
$\Sigma_{\text {SFR }}, \mathrm{M}_{\square} / \mathrm{yr} \mathrm{kpc}^{2}$	$\lambda_{0,}, G y r^{-1}$	$\lambda_{I,} G y r^{-1}$	$\lambda_{2,}$ Gyr $^{-1}$	$\lambda_{0,} G y r^{-1}$	$\lambda_{I,} G y r^{-1}$	$\lambda_{2,}{G y r^{-1}}^{2}$
0	0.906	0.919	0.920	0.895	0.895	0.895
0.012	0.246	0.243	0.245	0.219	0.235	0.250
0.024	-0.495	-0.405	-0.378	-0.457	-0.429	-0.402
0.06	-2.51	-2.42	-2.38	-2.49	-2.46	-2.41

Critical value for star formation

- For star formation we can obtain $\Sigma_{c r} \approx 0.013 \mathrm{M}_{\odot} / \mathrm{yr} \mathrm{kpc}^{2}$.
- If $\Sigma_{S F R}>\Sigma_{c r}$, the field decays.
- This value is few times more than in the Milky Way.

Summary

- The dynamo model with random diffusivity coefficients has been studied. It can be useful to describe the influence of active processes on the magnetic field.
- According to this approach, intensive active processes make the field decay. As for the star formation rate, the field decays if $\Sigma_{S F R}>\Sigma_{c r} \approx 0.013 \mathrm{M}_{\odot} / \mathrm{yr} \mathrm{kpc}^{2}$.
- It is quite similar to the results obtained in deterministic dynamo model with star formation (Mikhailov et al., 2012; Mikhailov, 2014).
- It is interesting to study a model where both alpha-effect coefficient and the diffusion coefficient are random. It can make our results more precise.

References

- Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D. 1996, ARAA, 34, 155.
- Mikhailov E.A., Sokoloff D.D., Efremov Yu.N. 2012, Astron.Lett., 38, 543.
- Mikhailov E.A. 2014, Astron. Lett., 40, 398.
- Mikhailov E.A., Modyaev I.I. 2015, Magnetohydrodynamics, 51,2, 285.
- Moss D. 1995, MNRAS, 275, 1, 191
- Moss D., Stepanov R., Krause M., Beck R., Sokoloff D. 2015, AA, 578, A94.
- Phillips A. 2001, GAFD, 94, 135.

THANK YOU FOR ATTENTION!

