New determination of period and quality factor of Chandler wobble, considering geophysical excitations*

Jan Vondrák, Cyril Ron, AI CAS, Prague Yavor Chapanov, NIGGG BAS, Sofia

Outline:

Introduction;

- Description of the data;
- New method proposed;
- Results based on 40-year data series;
- Conclusions.

*Based on paper submitted to Advances in Space Research

Introduction:

- Excitations by geophysical fluids play dominant role in polar motion. Rapid changes of amplitude & phase of the free term (Chandler wobble) occur near the epochs of geomagnetic jerks (GMJ), as recently demonstrated by:
 Gibert & le Mouël (2008), or
 - Vondrák & Ron (2015), who demonstrated that better agreement with observations is obtained if additional impulselike excitations due to GMJ are added to the effects of geophysical fluids.

Here we propose a new method of determining period and Q-factor of Chandler wobble, using the numerical integration of broad-band Liouville equations with these geophysical excitations.

Data used (1974.0-2014.0), all of them smoothed and long-periodic part removed:

- Polar motion, as observed by different techniques (optical astrometry before 1988, space geodesy afterwards):
 - IERS C04 combined solution;

Geophysical fluids:

- Atmospheric excitations: ERA, with 6-hour steps;
- Oceanic excitations: OMCT, with 6-hour steps;

Geomagnetic jerks (rapid changes of geomagnetic field):

Epochs 1978.0, 1986.0, 1991.0, 1994.0, 1999.0, 2003.5, 2004.7, 2007.5, 2011.0.

Method of determining period *P* and *Q*-factor

- We use numerical integration of Brzezinski's broadband Liouville equations with geophysical excitations, in two variants:
 - Atmospheric + oceanic excitations only;
 - Atmospheric, oceanic + GMJ excitations,
- for three different intervals:
 - ♦ 1974.0-1994.0,
 - ♦ 1994.0-2014.0,
 - ♦ 1974.0-2014.0.
- The integration is repeated for many different combinations of P, Q; for each combination the best fitting initial pole position (and amplitudes of GMJ excitations) is found.
- P, Q values yielding the best root-mean-square (rms) fit to observed pole path are then chosen.

Astronomical Institute of the Czech Academy of Sciences

Brzeziński's broad-band Liouville equations (in complex form):

$$\ddot{p} - i(\sigma_{c} + \sigma_{f})\dot{p} - \sigma_{c}\sigma_{f}p =$$

$$= -\sigma_C \left\{ \sigma_f(\chi_p + \chi_w) + \sigma_C(a_p\chi_p + a_w\chi_w) + i \left[(1 + a_p)\dot{\chi}_p + (1 + a_w)\chi_w \right] \right\}$$

where

p is the polar motion; σ_C , σ_f are Chandler and Free Core Nutation frequency; χ_p , χ_w , are pressure and wind term of the excitation; $a_p = 9.200 \times 10^{-2}$, $a_w = 2.628 \times 10^{-4}$ are numerical constants.

We fix the value of $\sigma_f = -6.31498 + 0.000153i$ [rad/day], and calculate $\sigma_C = \Omega(1+i/2Q)/P$, where $\Omega = 6.30038$ rad/day is the mean speed of Earth's rotation.

Numerical integration of Brzeziński's eqs.:

- We use 4-order Runge-Kutta procedure (in complex form), with 6-hour step:
 - The initial conditions are chosen to assure the best fit to observations, and also to get rid of 'forbidden' quasi diurnal free motions.
 - For GMJ (rapid changes of the secular variations of geomagnetic field) we model the excitations as bell-shaped functions centered at GMJ epochs, 200 days wide, complex amplitudes a are estimated to yield the best fit to observations:

Results for 1974.0-1994.0

A) only atmosphere + oceans

asu

B) atmosphere + oceans + GMJ, 1974.0-1994.0

Profiles for 3 different values of P, Q (A+O+G, 1974.0-1994.0):

Astronomical Institute of the Czech Academy of Sciences

Integrated and observed polar motion, 1974.0-1994.0

Results for 1994.0-2014.0

A) only atmosphere + oceans

Institute

of Sciences

asu

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

B) atmosphere + oceans + *GMJ*, 1994.0-2014.0

Astronomical Institute of the Czech Academy of Sciences

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

Integrated and observed polar motion, 1994.0-2014.0

Astronomical Institute of the Czech Academy of Sciences

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

asu

of Sciences

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

Integrated and observed polar motion, 1974.0-2014.0

Astronomical Institute of the Czech Academy of Sciences

10th Serbian-Bulgarian Astronomical Conference, Belgrade, June 2016

Summary of the results:

Results of Chandler wobble period P (in days) and quality factor Q, obtained with only atmospheric and oceanic excitations (A+O), and with GMJ added (A+O+G). Root-mean-square fit rms between integrated and observed values (in mas) are also shown.

	A+O			A+O+G		
interval	Р	Q	rms	Р	Q	rms
1974.0-1994.0	432.13±0.56	197 (155, 269)	37.7	431.31±0.91	45 (40, 55)	32.6
1994.0-2014.0	431.09±0.43	103 (85, 130)	38.6	435.72±0.80	22.7 (22.1, 24.6)	22.7
1974.0-2014.0	431.88±0.43	83 (76, 90)	43.2	432.85±0.99	34.7 (31.2, 39.5)	31.2

Preferred values

Conclusions:

 Geophysical excitations yield significant contribution to polar motion;

- Additional excitation by GMJ substantially improves the agreement with observations in all intervals studied;
 - In the determination of Q-factor is improved, and yields lower values (stronger damping):
 - dampings between GMJ events are stronger than average value over the whole interval,
 - It determination of the period P is less accurate, but consistent with its values without GMJ:
 - ♦ it is based on short time intervals between individual GMJ events.

♦ Our preferred values are *P*=431.88±0.43, *Q*=34.7 (31.2,39.5)

THANK YOU FOR YOUR ATTENTION!

Acknowlegments: This study was made possible thanks to the grant No. 13-15943S provided by the Grant Agency of the Czech Republic, and also to Joint Research Project between BAS and CAS.

