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Abstract. We want to approximate the nm× image A from scanned astronomical 
photographic plates (from the Sofia Sky Archive Data Center) by using far fewer entries 
than in the original matrix. By using rank of a matrix, k  we remove the redundant 
information or noise and use as Wiener filter, when rank mk <  or nk < . With this 
approximation more than 98% compression ration of image of astronomical plate without 
that image details, is obtained. The SVD of images from scanned photographic plates 
(SPP) is considered and its possible image compression.  

 
1. INTRODUCTION 

 
The need to minimize the amount of digital information stored and retrieved is 

an ever growing concern in the modern world. Singular Value Decomposition 
(SVD) (Andrews and Patterson, 1976)  is an effective tool for minimizing data 
storage and data transfer. Application of SVD in astronomy can be found in 
(Boissel et al., 2001), where SVD is applied to a mid-infrared ISOCAM spectral 
map of NGC 7023 and a mathematical analysis of the map in terms of a linear 
combination of elementary spectra is provided. The spectrum observed on each 
pixel can be described as the physical superposition of four components - the 
intrinsic spectra of polycyclic aromatic hydrocarbons, very small grains, larger 
dust grains and a differential spectrum that could trace the ionisation state of 
polycyclic aromatic hydrocarbons.   



VASIL KOLEV et al. 
 

188 
 

 
 

Figure 1. Structure of SVD matrices decomposition. 
 
Other application of SVD is made for separation of image data and noise 

subspaces using SVD (Yatawatta, 2008). The SVD characterized the signal and 
noise subspace eigenmodes. Because the noise has much lower power compared 
with the signal, the eigenmodes corresponding to the dominant singular values.  

SVD is applied also for detection of faint stars, noise removing, continuum 
subtraction of spectral lines for radio-astronomical images, and automatic image 
classification.  

The goal of this paper is an application of SVD as a new approach for images 
analysis from scanned photographic plates (SPPs).  This approach is in connection 
with a future creation of the image compression database of Rozhen Observatory 
SPPs. 

The SPPs stored on the servers of the Sofia Sky Archive Data Center, are with 
large image sizes, which take  a lot of space in the computer systems. In order to 
minimizing such image sizes there are different methods for image compression. 
One such method is a Singular Value Decomposition - very useful technique in 
data analysis and visualization. In linear algebra SVD is a well-known technique 
for factorizing a rectangular matrix, real or complex, which has been widely 
employed in signal processing, like image compression (Demmel, 1997; 
Nievergelt, 1997),  noise reduction or image watermarking.  

Recently, the SVD transform was used to measure the image quality under 
different types of distortions (Shnayderman, Gusev and Eskicioglu, 2004). Among 
all useful decompositions SVD - that is the factorization of a matrix A into the 
product TVUΣ of a unitary matrix U, diagonal matrix Σ , and another matrix 

TV - assumes a special role (Fig.1). There are several reasons for it:  
- The fact that the decomposition is achieved by unitary matrix, makes it an 

ideal vehicle for discussing the geometry of n-space; 
- SVD is stable, small perturbation in A correspondent to small perturbation in 

Σ  and conversely; 
- The diagonality of Σ  makes it easy to determine when A is near to rank-

degenerate matrix, and when it is, the decomposition provides optimal low-rank 
approximation to A; 
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- Thanks to the pioneering efforts of Gene Golub, efficient and stable 
algorithms to compute the SVD have already existed. 
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Figure 3. A weight matrix image decomposition of SPP ASI067 000556 (M45-
556p.fits) in the region of the Pleiades stellar cluster. 
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SVD is an intriguing analogy between reduced rank approximations and 
Fourier analysis. Particularly in the discrete case Fourier analysis can be viewed as 
representing a data vector relative to a special orthogonal basis. The basis 
elements are envisioned as pure vibrations, that is sine and cosine functions, at 
different frequencies. The Fourier decomposition thus represents the input data as 
a superposition of pure vibrations with the coefficients specifying the amplitude of 
each constituent frequency. Often, there are a few principal frequencies that 
account for most of the variability in the original data. The remaining frequencies 
can be discarded with little effect. The reduced rank approximations based on the 
SVD are very similar in intent. However, SVD captures the best possible basis 
vectors for the particular data observed, rather than using one standard basis for all 
cases. For this reason, SVD - based reduced rank approximation - can be thought 
of as an adaptive generalization of Fourier analysis. The most significant 
vibrations are adapted to the particular data that appear. 

 
2. SINGULAR VALUES AND THE MATRIX 2-NORM 

 
Let us introduce matrix 2-norm for real –value matrix A : 
 

max21x2
xmax

2

λ==
=

AA                                             (1) 

where x  is a vector and maxλ  is the largest eigenvalue such that IAAT λ−  is 
singular.  

The matrix 2-norm inherits unitary invariance from the vector 2-norm: for any 
unitary matrices U and V,

22
AUAV = , but did not provide a simple formula 

for this norm in terms of the entries of A, as we did for the induced matrix 1- and 
∞ -norms. With the SVD we can now derive such a formula. Recall that the vector 
2-norm (and hence the matrix 2-norm) is invariant to premultiplication by a 
unitary matrix. Let TVUA Σ=  be a singular value decomposition of A. 

This 
2

T
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ΣVVUA =Σ= . The matrix 2-norm is also immune to a 

unitary matrix on the right: 
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where we have set xy TV=  and noted that 

222
xx == TVy , since TV  is 

unitary matrix. 
Let { }nmp ,min= , where m-size matrix U, n-size matrix V, Fig.1. Then 
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1σ==
22

ΣA . Thus the matrix 2-norm is simply the first singular value and it 
is the largest singular value. Examples of singular values of full rank are shown in 
Fig. 4-6 and without zero eigenvalues in Fig. 7. The 2-norm is often the `natural' 
norm to use in applications, but if the matrix A is large, its computation is costly 
(O(mn2) floating point operations). For quick estimates that only require O (mn) 
operations and are accurate to a factor of m  or n , use the matrix 1- or ∞ -
norms. The SVD has many other important uses.  

For example, if mnCA ×∈  is invertible and non singular, we have 
T1-1 UVΣA −= , and so  

nmin21x
2

1- 11
xmin

1

2

σλ
===

=
A

A                                         (3) 

 
where minλ  is the smallest eigenvalue such that λIAAT −  is singular. This 
illustrates that a square matrix is singular if and only if 0n =σ .  

We shall explore this in more details later using the SVD to construct low-rank 
approximations to A . 

 
3. LOW-RANK MATRIX APPOXIMATION 

 
For simplicity, assume nm ≥ . Then the SVD of A can be written as 

TVUA Σ=  can be written as the linear combination of m-by-n outer product 
matrices: 
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One of the key applications of the singular value decomposition is the 

construction of low-rank approximations to a matrix. Hence for any nC∈x  
 

                 j

n

1j

T
jj

n

1j

T
jjj )uxv(σ)xvu(σx ∑∑

==

==A                                               (5) 

 
since xvT

j  is just a scalar. We see that xA is linear combination of the left 

singular vectors  . The only catch is that ju  will not contribute to the above 
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linear combination if  0j =σ . If all the singular values are nonzero, set r = n; 

otherwise, define r such that 0≠rσ  but 01 =+rσ . Then we have low-rank 
approximation to a matrix A: 

j

r

j
j u)xv(x

1

T
j∑

=

= σA                                                   (6) 

We can approximate A by taking only a partial sum here: 
 

∑
=

=
k

j
jj

1

T
jvuσkA  or                                                 (7a) 
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=
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j
j

1
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for rk ≤ . The linear independence of { }k1 u,u L  guarantees that rank(Ak) = k 
with  an nm×  a weight matrix T

jvu j=w
jA . Example, we can see that for 5j = , 

where eigenvalues are: 
107.16  ,161.29  ,30338  ,841.71 ,3.794 54321 ===== σσσσσ . 

 
Therefore we obtained matrix decomposition: 
 

w
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w
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w
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T
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T
111 vuvu σσσσσ +++=++= LL               (8) 

 
and we can represent image with weight matrices (Fig.2) and example of (Fig.3) 
for j=5. Thus the terms T

jvu jjσ  with small jσ  contribute very little to original 
matrix. We can get rid of them and still to have a good approximation to matrix 
A . 

But how well does this partial sum approximate A? This question is answered 
by the following result (Nievergelt, 1997) that has wide-ranging consequences in 
applications. 

 
Theorem: For all  rank(A)k1 <≤ , 

1krank(X)
min +=

= kσX-A                                                    (9) 

with the minimum attained by ∑
=

=
k

j
jj

1

T
jvuσkA  

There is a full proof description in Yang and Lu (1995). Notice that we do not 
claim that the best rank-k approximation given in the theorem is unique.  
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4. EXAMPLE OF THE SINGULAR VALUE DECOMPOSITION 
 
The standard algorithm for computing the singular value decomposition differs 

a bit from the algorithm described above. We know from our experiences with the 
normal equations for least squares problems that significant errors can be 
introduced when AAT  are constructed. For practical SVD computations, one can 
sidestep this by using Householder transformations to create unitary matrices U 
and V such that B=UAVT is bidiagonal, i.e., bjk = 0 unless j = k or j-1=k. One then 
applies specialized eigenvalue algorithms for computing the SVD of a bidiagonal 
matrix. While this approach has numerical advantages over the method used in our 
constructive proof of the SVD, it is still instructive to follow through that 
construction for a simple matrix, say 
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Step 1.  First, form AAT : 
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and compute its eigenvalues, λ , and (normalized) eigenvectors, v : 
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Step 2. Set 
 

31211 === λσ vA  and  12222 === λσ vA  
 

Step 3. Since 0, 21 ≠σσ , we can immediately form 1u  and 2u  
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The 
jσ

1
scaling ensures that both 1u  and 2u  are unit vectors. We can verify 

that they are orthogonal: 
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Step 4. At this point, we have all the ingredients to build the reduced singular 

value decomposition: 
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The only additional information required to build the full SVD is the unit 

vector 3u  that is orthogonal to 1u  and 2u . One can and such a vector by 
inspection: 
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If you are naturally able to eyeball this orthogonal vector, there are any number 

of mechanical ways to compute 3u , e.g., by finding a vector Tu ],,[3 γβα=  that 
satisfies:  

Orthogonality conditions 0uuuu 3
T
23

T
1 ==  

                                      Normalization condition 1uu 3
T
3 =  

We can find vector 3u  using the Gram-Schmidt process too.  
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a)  b)  
Figure 4. Image of SPP ASI067 000556 (M45-556p.fits) in the region of the 
Pleiades stellar cluster. a) Original image of SPP (size 1122x1122), b) Singular 
values. 

 

a)  b)  
Figure 5. Image of SPP BAM010M (nz194.fits); a) Original image SPP (size 
9898x9897); b) Singular values. 

 
 

5. APPLICATION OF LOW-RANK APPROXIMATION 
IN IMAGE COMPRESION 

 
As an illustration of the utility of low-rank matrix approximations, we consider 

the compression of digital images. On a computer, the image is simply a matrix 
denoting pixel colors. Typically, such matrices can be well approximated by low-
rank matrices. Instead of storing the mn entries of the matrix A, one need only 
store the kn)k(m ++  numbers that make up the various jσ , ju and jv  values 
in the sum: 
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a)       b)  
 

Figure 6. Image of SPP ROZ050 006419 (6419.fits) in the region of the Pleiades 
stellar cluster a) Original image SPP (size 9906x10060); b) Singular values. 

 

a)      b)  
Figure 7. Image of SPP ROZ200 001655 (ROZ200 001655a.fits), taken in the 
region of S MON a) Original image SPP (size 18898x18240); b) Singular values 

 
When k<<min(m, n)  this can make for a significant improvement, though 

modern image compression protocols use more sophisticated approaches.  
Next, we show the singular values for one image matrix, the scanned plate 

ASI067 000556 (M45-556p.fits) in the region of the Pleiades stellar cluster, with 
image size 1112x1122 and 16bit pixel format. We see that the singular values 
decrease near linearly. Though the singular values are very large, 7

1 10>σ , 
fig.4b, there is a relative difference of five orders of magnitude between the 
smallest and largest singular value. We see that the singular values decrease 
rapidly.  
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a) b) c)  

d)   e)    f)  
 

Figure 8. The SVD rank approximations for image SPP ASI067 000556 (M45-
556p.fits) in the region of the Pleiades stellar cluster.  

 
There are one greater than 710  and only four greater than 610 . If all the 

singular values were roughly the same, we would not expect accurate low-rank 
approximations. We can approximate a matrix by adding only the first few terms 
of the series (Fig. 8).  

For image quality measure we use compressed ratio. It is given with:  
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Thus, one way of compressing the image is to compute the singular value 

decomposition and then to reconstruct the image by an approximation of smaller 
rank.  

This technique is illustrated in Fig. 8, which shows respectively the terms 
T
jvu j  and the terms ∑
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=
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j
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T
jvuσkA . As can be seen in Fig. 8 and Fig. 9, the 

image is reconstructed almost perfectly (according to the human eye) by a rank 40 
approximation. This gives a compression ratio of: 
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a) b) c)  

d)  e) f)  
 

Figure 9. The SVD rank approximations for scanned image of SPP BAM010M 
(nz194.fits). 

 
Let us to show rank approximation image matrix of a scanned plate BAM010M 

(nz194.fits), with image size 9898x9897 and 16bit pixel format. The first ten 
singular values are: 

695 935 3991 =σ , 983 103 362 =σ , 347  223  273 =σ , 198349874 =σ ,
139773205 =σ 122950176 =σ , 108818927 =σ , 104182738 =σ ,

364 556 99 =σ , 903711910 =σ  
… 

954.59849 =σ , 832.19850 =σ , and !104.7 -11
9851 ∗=σ  

 
We obtained that after a 9850 singular value all singular values are zeros (Fig. 

5b).  
Let us to show rank approximation image matrix of a scanned plate ROZ200 

001655a.fits, with image size 18898x18240 and 16bit pixel format.  
The first ten singular values are: 

12246.08681 =σ , 1060.94362 =σ , 578.45463 =σ , 413.65484 =σ ,
333.35255 =σ 267.04126 =σ , 222.57097 =σ , 199.27048 =σ ,
187.14449 =σ , 183.611410 =σ  

… and 4
18240 10*5 −=σ . The singular values are represented in Fig. 7b.  
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a) b) c)  

d) e)  f)  
Figure 10. The SVD rank approximations for the scanned image of SPP ROZ050 
006419 (6419.fits) taken in the region of the Pleiades stellar cluster. 

 
6. CONCLUSIONS 

 
Since matlab code for SVD calculate full rank SVD, we create matlab code for 

step by step rank approximation simulation for image processing of SPP. 
As rank k increases, the images quality increases, but the same does the 

volume of memory needed to store the images. This means that smaller ranked 
SVD approximations (smaller values for j ) are preferable.  

By storing only the first columns of U and V  and their respective singular 
values, the image can be replicated while taking up only: 

- 5.35% for image of CR=94.65% with k=30, image size (1122x1122) (Fig. 
8d), 

- 1.01% for image of CR=98.99% with k=50, image size (9898x9897) (Fig. 
9d),  

- 1% for image of CR=99.00% with k=50, image size (9906x10060) (Fig. 10d) 
of the original storage space.  

We can actually see how the compression breaks down the matrix for a rank 
approximation. Notice that every row of pixels is the same row, just multiplied by 
a different constant, which changes the overall intensity of row. The same goes for 
columns: every column of pixels is actually the same column multiplied by a 
different constant (Fig. 3). 

Notable those with minimum number rank,  
- rank 12 with CR=97.86, image size (1122x1122) (Fig. 8c), 
            - rank 9 with CR=99.82%, image size (9898x9897) (Fig. 9b), 
            - rank 9 with CR=98.82%, image size (9906x10060) (Fig. 10b), 
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we read clearly the marks of the plates. With very big CR we can see image 
details. This can be use similar as filter and useful for image denoising. The rank 
image approximation is faster from wiener filter processing. This is important 
when there are large images (e.g. scanned plates). These low-rank matrix 
approximations to SPP images do require less computer storage and transmission 
time than the full-rank image.  

 
The SVD facilitates the robust solution of a variety of approximation problems, 

including not only the least squares problems with rank-deficient A, but also other 
low-rank matrix approximation problems that arise throughout engineering, 
statistics, the physical sciences, and social sciences too. 
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