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Abstract. The application of the Bayesian probability theory in a various astronomical 
research work over the past decade is discussed in the presented talk.  The basic idea of the 
Bayesian approach to astronomical data is presented with a special attention for its 
plausibility to the subject of Astroinformatics. In Particular the Gregory-Loredo method 
for periodic signal detection of unknown shape in time-series with Gaussian errors is 
tested. 

  
1. BRIEF HISTORY OF THE BAYESIAN PROBABILITY THEORY 
 
At the present astronomical publications the adjective “Bayesian” is 

increasingly often in use in order to point at specific logical approach and to 
distinguish the “classical” statistical approach to observational data. As a part of 
Probability Theory, Bayesian probability theory exploits the idea of the probability 
as “a measure of state of knowledge” (Jaynes, 2003), rather than a long-run 
expected frequency of the occurrence of the event. This extended concept for 
probability comes close to the every-day meaning of this world as insufficient 
reasoning and is a base for advanced data analysis techniques, such as 
hypothesises testing, model comparison, subjective reasoning and data mining. At 
this point of view, following the inductive and deductive logic, Bayesian analysis 
can significantly improve the parameter estimation, allowing the researcher to 
assign probabilities to competing hypotheses. 
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The first fundaments of the Bayesian logic belong to Thomas Bayes (1702 – 
1761), who was an English mathematician and Presbyterian minister ( 
Encyclopædia Britannica, 2010). His main work “Essay Towards Solving a 
Problem in the Doctrine of Chances” (1763), was published in the Philosophical 
Transactions of the Royal Society. In this essay Bayes published the first version 
of what latter has become known as “Bayes's theorem”, a discussion of the 
binomial distribution as well as the first occurrence of a probability logic result 
involving conditional probability (Dale, 2003). According to Dale (2003), Bayes’ 
mathematical work include discussions of probability, trigonometry, geometry, 
solution of equations, series and differential calculus, but also he was interested in 
electricity, optics, astronomy and celestial mechanics. 

The general version of the Bayes theorem, (the theorem that treats the 
conditional probabilities), and the early Bayesian probability theory were set up 
and developed by the French mathematician, astronomer, and physicist Pierre-
Simon Laplace, (1749–1827). Laplace is well known for his solar system 
investigations, but he has also demonstrated the usefulness of probability approach 
to scientific data, especially in celestial mechanics, medical statistics and law 
sciences (Stigler, 1986). Laplace has also introduced the principle for assignment 
of the priors, called the principle of insufficient reason (Fienberg, 2006). He used 
uniform priors, which are the simplest non-informative priors, reasonable in case 
of insufficient knowledge for setting up the informed priors. Latter on this 
principle was called by De Morgan (Fienberg, 2006) ,  the inverse probability as it 
infers backwards from observations to parameters. After the 1920s, Laplace’s 
probability principles were argued mostly by Ronald A. Fisher, Jerzy Neyman and 
Egon Pearson and were substituted by a set of methods latter called frequentist or 
classical statistics (Fienberg, 2006). Neyman, in his work "Frequentist probability 
and frequentist statistics" (Neyman, 1977), developed the idea of confidence 
intervals  because "the whole theory would look nicer if it were built from the start 
without reference to Bayesianism and priors". Actually Bayesian appeared as a 
terminology in the 1930s, and latter on it was used by those who have not 
accepted the limitations of frequentist statistics (Fienberg, 2006). 

According to Daston (1994),  “Between 1837 and 1843 at least six authors: … 
made similar distinctions between the probabilities of things and the probabilities 
of our beliefs about things." These two different approaches gave rise to the 
objective and subjective directions in Bayesian theory. In the objective direction 
the statistical analysis depends only on the data and the assumed models, and is 
not influenced by subjective decisions. For instance in the early 1920s, John 
Keynes represent the idea that the probability should be treated as “subjective 
degree of belief in a proposition”, while the classical approach to probability refers 
to the frequency of the occurrence of the event. Latter on at 1939 Harold Jeffreys 
(1939},  published his basic work “Theory of probability” (Jeffreys, 1939), were 
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he developed the Objective Bayesian inference.1 At 1957th Edwin Jaynes 
introduced the principle of entropy for priors constructing, and in 1965th Dennis 
Lindley with his book "Introduction to Probability and Statistics from a Bayesian” 
promoted the Bayesian methods.2 The development of the Markov chain Monte-
Carlo methods at eighties removed many computational problems in front of the 
Bayesian statistics. At present Bayesian approach is widely used in different 
applications for machine learning, data mining, Bayesian network. 

 
2. BASIC CONCEPTS OF THE BAYESIAN PROBABILITY THEORY 
 
In general Bayesian probability theory gives tools for evaluating of the 

probability of hypothesis, using the prior probability distribution, updated or 
affected by the relevant data and the available additional information. Thus the 
probability of a given hypothesis could be updated with the new data releases and 
might be interpreted as a “state of knowledge” (Jaynes, 2003). Contrary, in the 
frequentist approach a hypothesis is either accepted or rejected, without assigning 
to probability. Bayesian approach is based on the Probability theory rules, such as 
product and sum rules, Boolean algebra and the Bayes theorem. The Bayes 
theorem gives the rule for the conditional probability P(H|D,I) of the proposition 
H, given that the proposition D and information I are true (shortly – H given D and 
I ) and its general form, according to Gregory (2005) is:  

 
P(H|D,I)=P(D|H,I)P(H|I)/P(D|I), where  
 
H is a specific proposition or set of hypothesis,  
 
D is the evidence or the data that are observed, 
 
I represent the prior information,  
 
P(H|I) is the prior probability of H given the I, that was assumed before the 

data became available,  
 
P(D|H,I) is the conditional probability of the data, given the H and I, also 

called the likelihood function,  
 
P(D|I) is the marginal probability of the data given I: the prior probability of 

the data under all possible Hypothesizes: P(D|I)=�P(D|Hi,I) P(Hi|I), it’s a 
normalization factor that ensure the sum of all the probabilities of the hypothesizes 
to be 1. 

 

                                                            
1Wikipedia, History of statistics, http://en.wikipedia.org/wiki/History_of_statistics# 
Bayesian_ tatistics, Aug. 2010. 
2 Ibid. 
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P(H|D,I) is the probability of the proposition H (hypothesis) given the 
proposition D (data) and I (information) 

 
The term in front the P(H|I), P(D|H,I)/P(D|I), describes the influence of the 

observational data to the probability of the hypothesis. When it is likely to observe 
the data under the hypothesis, then this factor will be large and it will result in a 
larger posterior probability of the hypothesis given the data. Contrary, if it is 
unlikely to observe the data if the hypothesis is true, then the term would reduce 
the posterior probability for the hypothesis. Thus the Bayes theorem measures the 
influence of the data on the on the probability of the hypothesis. Bayesian 
inference, when applied to scientific data analysis, rules the updating hypothesizes 
given to the new data or experiments by a basic schedule of few steps: (1) setting 
up the hypothesis space and the prior probabilities; (2) Data models and parameter 
space definition; (3) Hypothesis testing and (4) calculation of the global likelihood 
function.  

At present, the definition of the hypothesis space in astronomy is based on the 
observational data, knowledge gained in the previous research or on theoretical 
consideration. There are two general approaches for assigning prior probability 
distributions of the parameters: informative, based on the previous evidence or on 
the expert opinion; and uninformative, based on general or obscure information. 
Useful practical approach for setting informative priors is to take a normal 
distribution with expected value based on the previous observation. The simplest 
rule for setting up uninformative priors is assignment of equal probabilities to all 
possibilities, but this encounters problems if the prior range of the parameter is 
infinite. There are also some other reasoning for priors set up: conjugate priors, 
which provide for the same type of the prior and posterior distribution, reduce the 
computational problems; the Jeffreys priors that assure that the statement of the 
prior believe are the same in different scales (such prior distribution is reasonable 
in time-series analysis to ensure equal results in terms of period and frequency).  

Scientific data models in general are described by several parameters and are 
accounting for observational errors.  In this case the Bayesian inference provides 
the computation of the joint likelihoods and probability distribution functions for 
each of the parameters. The marginalization (integration or summation of the joint 
posterior distribution function over the nuisance parameters) procedure gives the 
marginal probability of the parameter of interest and then the mean, mode values 
and the credible intervals are easily estimated.  

Bayesian model selection answers the question how probable is a model given 
the data, if we consider a set of models (M1 and M2 for instance) independently of 
the model parameters. The models are evaluated by computing the odds factors 
(Q12) and marginalization out all the parameters Gregory (2005):  

Q12=P(M1|D,I)/ P(M2|D,I)=[P(D|M1,I)/ P(D|M2,I)][ P(M1|I)/ P(M2|I)], where  
[P(M1|I)/ P(M2|I)] is the prior odds of the model, often taken to be 1, assuming 

the models are of equal probability 
[P(D|M1,I)/ P(D|M2,I)] is the Bayes factor (B12), computed by the marginal 

likelihoods for each model. 
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3. BAYESIAN PROBABILITY THEORY, LAST DECADE IN 
ASTRONOMY 

 
Increased impact of the Bayesian inference in astronomical research may be 

traced in professional literature, in modern statistical application as well as in the 
publications in the main astronomical journals. A reference into the Amazon.com 
book store returns several volumes, written by high level professionals in 
statistical studies and astrophysics:  

The work of P.C. Gregory, “Bayesian Logical Data Analysis for the Physical 
Sciences: A Comparative Approach with Mathematica® Support” (2005, 2006), 
(Gregory,  2005) undergoes its third edition at 2010 and is a fundamental book 
that discusses application of the Bayesian statistics in physical sciences. The book 
gives detailed and clear exposition of the Bayesian concepts with number of useful 
examples, numerical techniques for Bayesian calculations, an introduction to 
Bayesian Markov Chain Monte-Carlo integration and least-squares analysis. In 
addition it is supported with a Mathematica notebook providing an easy to 
learning routines. 

Modeling disc galaxies using Bayesian/Markov chain Monte Carlo is the 
subject of the recent book by D. Puglielli “Galaxy Modeling using Bayesian 
Statistics: A Bayesian/Markov chain Monte Carlo Approach to Modeling NGC 
6503” (Puglielli, 2010). A large set of observations for the dwarf spiral galaxy 
NGC 6503 is examined for fitting with sophisticated dynamical models and the 
joint posterior probability function for the model parameters is obtained. This 
approach gives constraints of important properties of the galaxy as its mass and 
mass-to-light ratio, halo density profile, and structural parameters. 

The application of the Bayesian methods in cosmological research is 
represented in the recent book by Michael P. Hobson and Andrew H. Jaffe 
“Bayesian Methods in Cosmology” (2010). The contribution of 24 experts in 
cosmology and statistics makes this book essential and competent guide for 
researches in cosmology. The book represents precise modeling of the Universe 
properties and gives a methodology (the basic foundations, parameter estimation, 
model comparison and signal separation) as well as a wide range of applications 
such as source detection, cosmic microwave background analysis, classification of 
galaxy properties. 

It also worth mention the publication of the 27th International Workshop on 
Bayesian Inference and Maximum Entropy Methods, named “Bayesian Inference 
in Science and Engineering: 27th International Workshop on Bayesian Inference 
and Maximum Entropy Methods” (2007) by the edition of Kevin H. Knuth, Ariel 
Caticha, Julian L. Center, and Adom Giffin (2007). For 30 years the MaxEnt 
workshops have explored the use of Bayesian probability theory, entropy and 
information theory in scientific, engineering and signal processing applications. 
Volume No. 27 considers Methods, Foundations and Applications in astronomy, 
physics, chemistry, biology, earth science, and engineering. 
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A collection of essays “Blind Image Deconvolution: Theory and Applications” 
(2007), edited by  P. Campisi, and K. Egiazarian expose up to day approaches 
theoretical fundaments of Blind  Image Deconvolution techniques. A special 
chapter for application of the Deconvolution and Blind image Deconvolution 
techniques in astronomy is provided by Eric Pantin, Jean-Luc Stark and Fionn 
Murtagh, which also include Bayesian approach. Bayesian methodology for image 
deconvolution is also exposed in the book of J.-L. Starck and F. Murtagh, 
“Astronomical Image and Data Analysis” (2006).  

A basic series of Astronomical statistics, “Statistical Challenges in 
Astronomy”, (2003, 2010), Statistical Challenges in Modern Astronomy II” 
(1997), edited by E. Feigelson, G. Babu,  was released after the conferences of the 
same name. These volumes focus on the topics: Bayesian approaches to 
astronomical data modelling, the Virtual Observatory impact on present 
astronomical research, time series analysis, image analysis, statistical modeling of 
critical datasets and its application in cosmology.  Many problems are introduces 
on the base of large astronomical projects, such as LIGO, AXAF, XTE, 
Hipparcos, and digitised sky surveys. 

In the last decade several software applications were found to be in use for 
Bayesian astronomical data analysis:  

BAYES-ME code of A. Asensio Ramos (2009), for investigations of 
spectropolarimetric observations with the Hinode solar space telescope;  

MULTINEST/SUPERBAYES (http://superbayes.org/) - is a robust Bayesian 
inference tool for cosmology and particle physics;3  

ARGO: Algorithm for the Reconstruction of Galaxy-traced Over-densities 
(Kitaura and Enßlin, 2008) – gives methodology, inverse algorithms and 
numerical optimization for Bayesian reconstruction of the cosmological large-
scale structure;  

Bayesian Photometric Redshift code BPZ,  http://acs.pha.jhu.edu/ ~txitxo/);  
ZEBRA: Zurich Extragalactic Bayesian Redshift Analyzer, 

http://www.astro.phys.ethz.ch/exgal_ocosm/zebra/index.php, combines and 
extends several of the classical approaches to produce accurate photometric 
redshifts down to faint magnitudes; it uses template-fitting approach to produce 
Maximum Likelihood and Bayesian redshift estimates. 

The most evident impact of the Bayesian approach to analysis of astronomical 
data and information could be seen in the publications in the professional journals. 
In the last decade more than 300 papers reports the application of the Bayesian 
methods, starting with about 15 papers at 2000 and ended up with more than 50 
papers per year at the last two years of the decade. The Bayesian methodology was 
not only used for precise parameter estimation but also for Model Comparison, 
Hypothesis testing, Object detection, identification and classification, Image 

                                                            
3 ”SuperBayes code”, http://superbayes.org/, Aug 2010 
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deconvolution. This approach has been applied to rather diverse astronomical 
topics; the main items are listed below in decreased number of publications: 
◦ Cosmology: Uses the Bayesian inference for data analysis (most of the 

papers concern the data analysis of the Wilkinson Microwave Anisotropy Probe 
Observations), Estimation of the Cosmic Microwave Background, The Universe 
parameters and model estimation, Dark energy studies; 
◦ Gravitational lensing: Uses the Bayesian inference for gravitational lenses 

detection and modeling; 
◦ Variable stars: Uses the Bayesian inference for variable stars detection, 

identification and classification, Light and Radial velocity curves analysis - 
estimation of the light curves properties, SN identification and classification; 
◦ Spectral fitting and deconvolution ; 
◦ Extrasolar Planets: Uses the Bayesian inference for New planet searches 

(Bayesian Kepler periodogram), Orbit analysis of the Extrasolar planets; 
◦ Solar astrophysics: Uses the Bayesian inference for solar flare predictions, 

magnetic fields estimation, solar oscillations detection; 
◦ The Galaxy studies: Use the Bayesian inference for the dist and halo 

kinematics study, Star Formation Ratio estimation, The Velocity Distribution of 
Nearby Stars, HIPARCOS data analysis. 

In principle, the Bayesian statistics is applied for analysis of mostly all 
astronomical type of data: Spectral (spectra fitting, Radial velocities, spectro-
polarimetric data), Photometric, Kinematic (Velocity distribution, Kepler 
periodogram), and Image (optical, IR, Radio, X-ray data) series analysis. 

 
4. GREGORY-LOREDO METHOD, GAUSSIAN NOISE CASE 

 
In the frames of the Astroinformatics projects of the Bulgarian Academy of 

Sciences, we are interested of applying Bayesian statistical methods for analysis of 
the photometric data obtained by the digitization of photographic plates, combined 
with modern CCD photometry, and with published electrophotometric 
observations. Such data usually would exhibit random time distribution, wide time 
intervals with a lack of observations, and also different quality and observational 
errors. We find out that the Bayesian Gregory-Loredo (GL) method (Gregory,  
1999) for time-series analysis with Gaussian error distribution is useful and 
practical for our research. The method gives robust and relatively fast tool for 
searching long-term photometric cycles with unknown shape. The GL method 
employs Bayes approach for signal detection and for the detected signal 
characteristics estimation. When using the Bayes statistics the first step is to 
determine the hypothesis space and its priori ranges, then to represent them with 
suitable models. In general, for stellar photometric data series we have three 
hypotheses - constant, variable, and periodic magnitude variations.  

Time series of photometric data we had obtained, consist of the observed 
magnitude di, taken at the moment ti   and corresponding errors. So the data model 
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for the observed stellar magnitude consists of model predicted magnitude dpi plus 
an error term. The error term, ei, includes observational error estimated by the 
observer, si and any unknown noise or signal which is not represented in the 
model: 

di=dpi +ei, 
In this method we assume the noise variance, ei, is finite with Gaussian 

distribution with variance σi
2. 

In the GL method periodic models are represented by a signal folded into a 
stepwise function, similar to a histogram, with m phase bins per period plus a 
noise contribution. In principle, with such a flexible model we are able to 
approximate a light curve of any shape. Hypotheses for detecting periodical 
signals represent a class of stepwise periodical models with following parameters:  
◦ P, or ω - period or angular frequency, in the priori range of (plo, phi);  
◦ φ- phase of minimal brightness of the star;  
◦ m – number of bins in the priori range from 2 to 12;  
◦ ri – light curve value in the ith bin;  
◦ b - Noise scale parameter, (defined as 1/σi

2=1/ si
2), the ratio of the 

variances of (di – dpi) and that of the observer noise estimates si. The priori range 
of is (0.05, 1.95); 

The GL method uses Jeffreys priors distribution for b and ω These priors give 
the good advantages to ensure the same Gaussian distribution for si and σi as well 
equal results in the period and frequency scales. The uniform priors are taken for 
phase and number of bins parameter. Based on the Bayes’ theorem, Gregoty and 
Loredo (1996), and Gregory (1999), gave rules and equations for calculation of 
the global and marginal likelihood functions, and of the odds ratios of constant, 
nonperiodic and periodic models. The most probable model parameters are 
estimated by marginalization of the posterior probability over the priori specified 
range of each parameter.  

We have tested the GL method using modeled datasets, with randomly 
distributed data-points over 100 years observed period and with data-gaps 
involved. Results for period detection are shown at Fig.1 (depending on the 
number of observations) and at Fig. 2 (depending on the amplitude of the light 
curve). The error bars at the Fig. 1 and 2 represent the deviation of the mode 
period, calculated by the use of bootstrapping method. Our test shows that the GL 
method gives reliable and accurate results even with sparse, randomly distributed 
data. 
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Figure 1. Results from the GL method for period detection: the most-probable 
detected period (bottom) and the Probability Density Function (top), depending on 
the number of observations. The modeled time-series are with period P=2.01 
years, magnitude amplitude of 0.4 mag and observational error of 0.05 mag, and 
observed time span of 100 years with involved 16 years data-gap. 
 

 
Figure 2. Results from the GL method for period detection, depending on the 
amplitude of stellar variability: the most-probable detected period (bottom) and 
the Probability Density Function (top), over modeled time-series, with period 
P=30.01 years, number of observations is 70, observational error of 0.05 mag and 
observed time span of 100 years. 
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5. GREGORY-LOREDO METHOD, APPLICATION FOR ANALYSIS OF 
THE CF OCT PHOTOMETRIC DATA 

 
We applied the GL method for the analysis of the photometric data we have 

collected for the bright, southern active giant star CF Oct (HD 196818). 
Variability of this star was first noticed on the photographic plates from Bamberg 
Observatory Southern Sky Survey (BOSSS) (Strohmeier, 1967). The GCVS 
(Samus et al., 2009)  mention CF Oct as a RS CVn variable with maximal 
brightness V=8.27 mag and relatively large photometric variations ~0.3 mag. We 
have digitized and analysed the early archival observations from the BOSSS (Innis 
et al., 2004). Photoelectric photometry for the star was published by Innis et al. 
(1983, 1987), Lloyd et al. (1987) and Pollard et al. (1989). The photometry studies 
show rotational modulation of  20 d, due to spotted activity. CF Oct is also 
reported to be a strong, flaring, microwave radio source by Slee et al. (1987), and 
appears at the ROSAT Bright survey catalogue (Fisher et al., 1998) with 1.12 
counts per second in the energy range of 0.1 - 2.4 keV. 

 
Figure 3. Light curve (with observational errors overploted) of CF Oct for the 
period 1964 – 2009.  

 
The photometric data in use is collected from Bamberg Observatory Southern 

Sky Survey (BAM) (Innis et al., 2004),  from published photoelectric photometry 
observations (PHOT) (Innis et al., 1983, 1987; Lloyd et al., 1987; Pollard et al., 
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1989),  from the Hipparcos satellite time-series (HIP),4  available via the Centre de 
Donnes astronomiques de Strasbourg (CDS), and from the All Sky Automated 
Survey (ASAS) data archive (Pojmanski, 2002) (http://www.astrouw.edu.pl/asas/). 

 
The dataset contains data for HJD of the observation, V mag of the star, and 

corresponding errors. As far the data is taken from different sources, there are 
significant intervals with lack of data and the data distribution is non-uniform. The 
resulting V magnitude light curve with overploted errors is presented on Fig. 3, 
where the crosses represent BAM data, asterisk - PHOT data, diamonds - HIP data 
and triangles - ASAS data. The dataset statistically is presented in Table 1, with 
following information: Dataset; Np - the Number of observations in the set; Ts - 
the time span of the set in days; HJD in the beginning of the set; Vmin, Vmax and 
<V> - minimal, maximal and mean values of V magnitude respectively. 

 
Table 1. CF Oct photometric data description. 
------------------------------------------------------------------------------- 
Dataset Np  Ts  HJD  Vmin  Vmax <V> 
-------------------------------------------------------------------------------- 
BAM   352  4484  2438560 7.67  8.3 7.98 
PHOT   137  3212  2444071 7.93  8.41 8.16 
HIP   130  1176  2447873 7.74  7.98 7.90 
ASAS  705  3058  2452693 7.67  8.41 7.91 
------------------------------------------------------------------------------ 
 
In order to reduce the likelihood of introducing unknown systematic errors into 

the periodicity study of CF Oct, due to the different observational methods and 
data reduction procedures employed, we analyze the variations of  <V>-V, where 
<V> is the mean value of V for each dataset, i.e. <V>=(<Vbam>, <Vphot>, 
<Vhip>, <Vasas>). 

With the collected data we are able to study variability of CF Oct in ranges 
from several days (this limit is set up by the average sampling frequency of our 
observations) to 15 years (1/3 of the covered observational time span). This is a 
rather large interval in frequency space, and was examined in several parts while 
detecting rotational or long-term variability, using a suitable number of 
frequencies in each case. 

Previous periodical analysis (PDM and least-squares method) of photographic 
and photoelectric observations shows that CF Oct has a well established rotational 
variability with period near 20 d. Application of the Gregory-Loredo method for 
rotational variability study, with restricted priori range of model parameters and 

                                                            
4 ESA,The Hipparcos and Tycho catalogues, ESA SP-1200, 1997. 
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based on all collected observations would result in more precise period estimation 
at different epoch. This analysis is relevant as already studied BAM and PHOT 
data shows slightly different periods (Innis et al., 2004), eventually due to the 
period estimation errors, phase shifting or more complex periodical modulation. 
For the separate datasets as well as for all the data combined, we have calculated 
the joint posterior probabilities for a class of models described by the parameters 
described above. The prior period P range is selected 19 to 21 days. By 
marginalization over the nuisance parameters we have computed the posteriori 
Probability Density Functions (PDF) of the number of bins and the period 
parameters and calculated their most probable (mmax and Pmax) and mean (mmean and 
Pmean) values. The PDF over the period is then normalized to have an integral over 
the priori range (19 to 21 d) to be 1. We have also computed the 68 per cent 
credible intervals (interval that contains 68 per cent of the PDF, and where the 
PDF is everywhere greater than the one outside the credible interval) for period 
detection. Table 2 represents our results: the most probable m (mmax), maximal 
probable period (Pmax), maximal probability for the period (Probmax), weighted 
mean period (Pmean) and the credible intervals. Number of bins parameter relates to 
the complexity of the light curve, to the light-curve shape and probably is 
connected with the structure of the stellar spots. 
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Figure 4. Normalized PDFs and light curves for the different datasets, top to 
bottom: BAM, PHOT, HIP and ASAS. 
 

 
 

Figure 5. Normalized PDF and light curve for all the data. 
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Table 2: Derived periods, probabilities and 68 per cent credible intervals. 
--------------------------------------------------------------- 
Dataset  mmax     Pmax       Probmax    Pmean  cre. int.    
--------------------------------------------------------------- 
BAM        3        20.04     0.31        20.04    0.01      
PHOT      2         20.17     0.16        20.16    0.03      
HIP          2         20.46     0.07        20.45    0.05      
ASAS      3         19.94     0.68        19.94    0.02     
-------------------------------------------------------------- 
ALL         3         20.16     0.45        20.14    0.04     
-------------------------------------------------------------- 
The normalized posterior PDFs for the period detection for the separate 

datasets as well as for all the data together are given on the left panels of Fig. 4 
and Fig. 5. The mean subtracted V light curves, plotted with the most probable 
periods for each of the datasets and for all the data respectively, and with an epoch 
set at the beginning of observations at HJD=2438560.4 are presented in the right 
panels of Fig.4 and Fig. 5. 

As it is seen from the PDFs, present Bayesian analysis confirms previous 
suggestions (Innis et al., 2004)  for period changes. The relatively narrow credible 
intervals (period estimation error) result basically of the prior restriction of the 
parameters which is based on the previous information about variability of CF Oct 
and clearly demonstrates general advantage of the Bayesian statistics. Most 
probable periods obtained for photographic plate and photoelectric photometry 
data are close to the previous published ones. Scatter in the light curves from 
different datasets shows that the amplitude of brightness variations, light curve 
shape and phase of the minimal brightness change with the epoch of observation. 

The GL method gives also opportunity for searching for long-term cycles with 
up to 6000 days length. We have evaluated the hypotheses for constant, for 
nonperiodic and for periodic signal, and have computed the odds ratios. The result 
shows that the periodic model is the best to represent the observational data and it 
is the most probable model. The variable model appears the second probable one 
and it is very reasonable since periodical models are a special case of variable 
ones. Searching for long-term periodic modulation over mean-subtracted, 
magnitude data, reveals three cycles with periods of 3582 d (~9.8 yr), 2432.5 d 
(~6.7 yr) and 1173 d (~3.2 yr). The marginal probabilities are 0.02, 0.008, 0.0003 
and the credible intervals are 300, 150 and 20~d respectively. The normalized 
(PDF) plot is shown in Fig. 6. Although the shortest cycle has a very low 
probability and thus is statistically insignificant, the period values of the other two 
cycles show that there is an evidence for observation of a harmonic signal, more 
powerful in the longest cycle, with a period of 3583 d and with its two overtones.  
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6. BAYESIAN PROBABILITY THEORY AND ASTROINFORMATICS? 
 
The astroinformatics appears at a merging area of astronomy with 

contemporary Information and Communication Technologies and is a 
consequence by the need of professional astronomers of unified access and tools 
for analysis of an enormous data volumes produced by multiple sky surveys. At 
present the Astroinformatics is a part of a common tendency for new sciences, 
called X-informatics (where X-refers to any scientific discipline), to be formed.  
The problematic of astroinformatics includes: data management and description, 
astronomical classification and semantics, data mining, visualization and 
astrostatistics. 

The Bayes theory, for its logical approach can provide a base for creation of 
robust and practical tools for astroinformatics. The Bayes inference, especially in 
its objective direction is appropriate for data-mining heterogeneous data series. 
This approach is highly relevant in modern astronomical research if the analysis of 
multi-wavelength observational data obtained with various detectors is required, 
as it is in the astroinformatics research. Particularly the observational data series 
used in astronomy nowadays often suffer of random time distribution, sparse data, 
different quality and are usable to be analyzed by the Bayesian statistics . The 
possibility for updating the analysis results when, given by the Bayes theorem, 
with new data release and also with additional information coming from 
theoretical predictions and/or restrictions give the advantage of a deeper and 
comprehensive, data-driven researches and discoveries. Hypothesis testing in 
Bayesian theory can be a base for the future development of new ICT tools for 
updating the “state of the knowledge” in X-informatics sciences, taking in account 
the complexity of all the available observations, theoretical predictions and 
previous research experience. Subjective direction in Bayes theory could give also 
a base for the development of machine learning techniques in astronomy, in 
special interest in astronomical objects and source classification based on all the 
available observational data.  
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