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Abstract. Interplanetary electron beams, produced by CMEs and flares, are unstable in the
solar wind and generate Langmuir waves at the local plasma frequency (fp) or its harmonic
(2fp). Radio observations of the waves in the range 4 - 256 kHz from the WAVES experiment
onboard the WIND spacecraft have been statistically analyzed. A subset of 36 events has
been selected for this study. The background consisting of thermal noise, type III bursts and
Galactic background has been removed and the remaining power spectral density has been
fitted by Pearson’s system of probability distributions. The coefficients of the probability
distributions have been calculated by using two methods: method of moments and maximum
likelihood estimation method. We have shown that the probability distributions of the power
spectral density of the Langmuir waves belong to three different types of Pearson’s probability
distributions: type I, type IV and type VI. In order to compare the goodness of the fits,
a few statistical tests have been applied, showing for all of the considered events that the
Pearson’s probability distributions fit the data better than the Gaussian ones. This is in
contradiction with the Stochastic Growth Theory which predicts log-normal distribution for
the power spectral density of the Langmuir waves. The uncertainty analysis that has been
performed also goes in favor of the use of Pearson’s system of distributions to fit the data.

1. OBSERVATIONS AND SAMPLE EVENTS SELECTION

We used the measurements obtained by four different experiments on-boarded
Wind spacecraft - a laboratory for long-term solar wind measurements, launched on
November 1, 1994. We have focused on radio observations obtained by the WAVES
experiment (Bougeret et al., 1995). In our study of locally generated Langmuir waves
we use data of two multi-channel thermal noise receivers (TNR), which cover the
frequency range from 4 kHz to 256 kHz in 5 logarithmically-spaced frequency bands.
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Each band covers 2 octaves with one octave overlap. Each of these bands is divided
into either 32 or 16 logarithmically-spaced channels. TNR provides rapid measure-
ments of plasma electric field (every 1.5 s or half spacecraft spin). The Langmuir
waves that are converted into electromagnetic waves – type III bursts, can then be
observed with two radio receivers, RAD1 and RAD2. The RAD1 frequency range,
from 20 to 1040 kHz, is divided into 256 linearly spaced channels of 3 kHz bandwidth
each. Frequency range of the RAD2 radio receiver, from 1075 to 13825 kHz, is divided
in the same number of channels as RAD1, but with 20 kHz bandwidth.

For the selection of a sample events we used: (1) one minute averaged measure-
ments of interplanetary magnetic field vector in Geocentric Solar Ecliptic (GSE) carte-
sian coordinates from Magnetic field investigation (MFI), (Lepping et al., 1995); (2)
for the particles measurements, i.e. for the full three-dimensional distribution of
suprathermal electrons and ions, we used 3-D Plasma and Energetic Particle Inves-
tigation (3DP) experiment (Lin et al., 1995); (3) for the solar wind velocity we used
data from the Solar Wind Experiment (SWE) (Ogilvie, 1995) which provides three-
dimensional velocity, density and temperature of the solar wind ions. As the solar
wind velocity we used proton velocity averaged over the time interval when our event
occurred.

The measurements, taken simultaneously by the four experiments, allow qualita-
tive analysis of the events.

2. ANALYSIS

The stochastic growth theory (SGT) describes situations in which an unstable
distribution of particles interacts self-consistently with its driven waves in an inhomo-
geneous plasma environment and evolves to a state in which the particle distribution
fluctuates stochastically about a state close to time and volume averaged marginal
stability. These fluctuations drive waves so that the wave gain, G = 2 ln(E/E0), is
a stochastic variable. The wave gain is the time integral of the wave energy density
growth rate and it is related to the wave electric field, E(t), by E2(t) = E2

0 exp[G(t)]
where E0 is a constant field. The observed electric field, E, is a consequence of a
large number of amplifications and damping: E = E0

∏N
i=1 eGi, (N � 1), where

gain, Gi, is a stochastic variable. Taking the logarithm of this equation one obtains:
log E = log E0 +

∑N
i=1 Gi. The central limit theorem can then be applied to the

probability distribution of log E which is thus a normal distribution (e.g. Robinson,
1992).

In order to see if the Langmuir waves associated with type III solar bursts satisfy
predictions of the SGT, we have undertaken the following steps. We have integrated
the power spectral density (St, index t denotes a certain moment of time) of Langmuir
waves through a narrow interval of frequencies (f1, f2) around the local plasma fre-
quency (fp): PLW,t =

∫ f2

f1
St df, (f1 < fp < f2). The integration is done numerically

by a trapezium method. In that way we obtain the total power of the Langmuir waves
at a given moment of time (PLW,t).
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Figure 1. Histograms of Langmuir waves power (2002 October 21st event). Upper
panel: Before (filled blue bars) and after (empty green bars) background removing.
Lower panel: part of upper panel, dashed line represents Gaussian fit of Langmuir
waves power histogram after background removing.
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To remove the background consisting of the thermal noise, the type III radio
burst and the galactic background, we have developed a heuristic algorithm based on
numerical techniques (interpolation and smoothing) with a few parameters. From the
remaining data we made new histogram, displayed in Fig. 1 (green empty bars), and
fit it with a normal distribution shape function (dashed line in Fig. 1, lower panel).
The error bars on the histogram are calculated as standard deviation of counting
statistics, i.e. the Poisson distribution.

To find a better approximation for the probability functions we have applied a
family of distributions proposed by Pearson (1895).

3. APPLYING pEARSON’S SYSTEM OF DISTRIBUTIONS

When dealing with empirical data with significant skewness and kurtosis, the nor-
mal distribution is not the best choice for modeling. The four parameter Pearson’s
system of distributions is a better choice (see Fig. 2 for an example). It represents a
wide class of distributions with a wide variety of shapes and thus provides more accu-
rate representations of the observed data. On the other hand, it includes, as special
cases, some well known distributions (normal, beta, gamma, Student’s t-distribution
etc.).
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Figure 2. Pearson type I (solid red line) and normal (dashed line) probability density
distribution of Langmuir waves power (2002 October 21st event).
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In 1895 Pearson (1895) defined this distribution system by the following ordinary
first order differential equation for the probability density function p(x):

−p′(x)
p(x)

=
b0 + b1x

c0 + c1x + c2x
,

where b0, b1, c0, c1 and c2 are five real parameters. After normalizing the fraction
with any of them, only four independent parameters remain. The form of the solution
of this differential equation depends on the parameter values, resulting in several
distribution types. The classification of distributions in the Pearson system is entirely
determined by the first moment – mean (μ1), and the next three central moments (μ2,
μ3 and μ4). Pearson proposed two dimensionless parameters, i.e. the two moment
ratios square of skewness (β1 = Sk2) and kurtosis (β2):

β1 =
μ2

3

μ3
2

, β2 =
μ4

μ2
2

.

These two parameters characterize the peakedness and the asymmetry of the dis-
tribution and it turns out that the distribution type depends only on two of them.
Their values can be estimated from observations (Johnson et al., 1994). The other
way of parameter estimation is the Maximal Likelihood Estimation method. For each
Pearson distribution type its parameters are determined to maximize the likelihood
function of the sample data. The best result over all types is chosen. For optimiza-
tion we used standard Nelder-Mead and Levenberg-Marquardt methods (Press et al.,
2007). Both methods gave very similar results.

We find that our 36 events belong to only 3 types of Pearson’s distributions: type
I (beta), type IV (not related to any standard distribution) and type VI (beta prime).
The positions of all 36 events in the β1 − β2 plane are shown in Fig. 3.

Most of the events are close to normal distribution, which is represented by the
point (β1, β2) = (0, 3). To see whether they are really different from a normal dis-
tribution, i.e. if the point (0, 3) lies within the uncertainty limits of the events, we
used two methods to evaluate the error-bars in β1 and β2: a Monte Carlo simulation
and a method of moments proposed by Karl Pearson (1895). Error bars shown in
Fig. 3 are calculated by the method of moments. It is found that the point (0, 3)
belongs to only four of the uncertainty ellipses (blue points). Out of 36 events, 32
have no intersection with the normal distribution point, opposite to the predictions
of the SGT.
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Figure 3. Beta plane. Out of the 36 events: 28 belong to Pearson’s type I, 1 to type
VI and 7 to type IV probability distribution.

4. CONCLUSIONS

We have examined 36 time intervals containing intense locally formed Langmuir
waves that are associated with type III radio bursts. We have shown that the prob-
ability distributions of the power of these waves belong to three different types of
Pearson’s probability distributions: type I, type IV and type VI. The goodness of
the fits test (e.g. χ2) shows that the Pearson’s probability distributions fit the data
better than Gaussian ones for all of the considered events. This is in contradiction
with the SGT which predicts Log-normal distributions for the power of the Langmuir
waves. The uncertainty analysis of β1 and β2 parameters also goes in favor of the use
of Pearson’s system of distributions to fit the data.

This result indicates that the SGT possibly requires additional verifications and
examinations.
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