VIII SERBIAN-BULGARIAN ASTRONOMICAL CONFERENCE Lescovac, Serbia, May 8-12, 2012

INHOMOGENEOUS BARYOGENESIS MODEL AND ANTIMATTER IN THE UNIVERSE

Daniela Kirilova, Mariana Panayotova

Institute of Astronomy and NAO Bulgarian Academy of Sciences, Sofia, Bulgaria

Baryon Asymmetry

Baryon asymmetry of the Universe:

$$\beta = \frac{(n_B - n_{\overline{B}})}{n_{\gamma}} \sim \frac{n_B}{n_{\gamma}} = \eta$$

Observational data:

5.1 x 10⁻¹⁰ < η_{BBN} < 6.5 x 10⁻¹⁰ at 95% CL $\eta_D = 6 \pm 0.3 \times 10^{-10}$ at 95% CL $\eta_{WMAP} = 6.16 \pm 0.16 \times 10^{-10}$ at 68% CL

The explanation of the observed asymmetry is the main goal of the current baryogenesis scenarios.

SC Baryogenesis model

• Attractive features:

successful BA generationcompatible with inflationsuccessful separation of matter and antimatter domainsetc.

• Description

B excess generated at inflationary stage, contained in $< \phi >$: B ~ H_T³

BV at large field amplitude due to BV terms in its potential:

$$U(\varphi) = m^{2}\varphi^{2} + \frac{\lambda_{1}}{2} |\varphi|^{4} + \frac{\lambda_{2}}{4} (\varphi^{4} + \varphi^{*4}) + \frac{\lambda_{3}}{4} |\varphi|^{2} (\varphi^{2} + \varphi^{*2})$$

At BC stage B contained in φ is transferred to that of quarks $\varphi \rightarrow q \overline{q} l \gamma$

This asymmetry, eventually further diluted gives the present BAU.

Evolution of B

$$\ddot{\varphi} - a^{-2}\partial_i^2 \varphi + 3H\dot{\varphi} + \frac{1}{4}\Gamma\dot{\varphi} + U'_{\varphi} = 0$$

$$\varphi_{\max}^0 \sim H \lambda^{-1/4}, \quad \dot{\varphi}_0 = H_I^2$$

After inflation ϕ oscillates around its equilibrium point with a decreasing amplitude due to Universe expansion and particle production by the oscillating scalar field.

The term $\Gamma \dot{\phi}$ in the equations of motion explicitly accounts for the damping of ϕ as a result of particle creation processes.

We have followed the evolution of B from inflation till BC epoch.

Numerical Analysis Results

For different λ , α , m and H_I, we have calculated $\phi(t)$ and B(t). $\lambda = 10^{-2} \div 5 \times 10^{-2}$, $\alpha = 10^{-3} \div 5 \times 10^{-2}$, $H = 10^{7} \div 10^{12}$ GeV, $m = 100 \div 1000$ GeV

• Particle creation strongly reduces B.

Results and Conclusions

The produced baryon charge decreases when m increases.

The produced baryon charge decreases when increasing H_I

Conclusion

This SUSY-baryogenesis model is capable to explain simultaneously the observed local baryon asymmetry and to provide a natural separation mechanism of vast antimatter regions, eventually present in the Universe.