

On the link between the solar energetic particles and eruptive coronal phenomena Statistical study in solar cycle 23

R. Miteva¹ and K.-L. Klein¹

in collaboration with S. W. Samwel² G. Trottet¹ O. Malandraki³ G. Dorrian³

¹ LESIA-Observatoire de Paris, CNRS, Univ. Paris 6 and 7, France
² National Research Institute of Astronomy and Geophysics, Egypt
³ National Observatory of Athens, Greece

VIIIth Serbian–Bulgarian Astronomical Conference, Leskovac, Serbia 2012

rositsa.miteva@obspm.fr

Motivation

Astrophysics

To study the particle acceleration and transport by combined in situ (particle fluxes) and remote observations (radiation signatures from gamma to radio waves)

Space weather effects

Refers to the conditions on the Sun, in the solar wind, magnetosphere, ionosphere and thermosphere, which can influence the performance and reliability of spaceborne and ground-based technological systems and which can affect human life and health (US National SW plan)

Solar-terrestrial relationship/Space weather

Solar energetic particles (SEPs)

Time coverage: 1997-2006

SEP events: ~100 (with origin in the western heliosphere) Association: solar flares and CMEs SEP events

flux of energetic particles (protons >10 MeV, electrons > 10 keV) observed in situ

deka-MeV protons

- GOES (~27 MeV)
- Wind/EPACT (~23 MeV)
- Cane et al. 2010 (~25 MeV)
- \rightarrow peak intensity, J_{p} (cm² s sr MeV)⁻¹
- \rightarrow onset time ±30 (to ~60) min

SEP acceleration, connection, transport

I. Particle acceleration

physical relationship between in situ particles and coronal activity/particle accelerator (flare–CME relationship!)

II. Magnetic connection

particle access to open magnetic field lines particle access from high corona to Earth

III. Particle transport scattering

I. Particle acceleration

A. Magnetic reconnection (small acceleration site and short timescales)

- flares
- behind CMEs

B. Shock acceleration (broad and long lasting accelerator)

- flare blast shock wave
- CME piston-driven shock

Solar flare

SOHO/EIT 28/10/2003

→ sudden release of the stored
magnetic energy in the corona,
~ 10²⁵ Joules,
emission covering the entire
EM spectrum (from γ- to radio)

X- and M-class (GOES 1-8 Å; western location) Solar Geophysical Data reports → SXR peak flux (10^{-4} W m⁻²)

Coronal mass ejection (CMEs)

→ mass (< 10¹³ kg) and embedded magnetic field expelled into the IP space

SOHO/LASCO catalogue → on-sky projected speed (100s–3000 km s⁻¹)

SOHO/LASCO C2 28/

28/10/2003

SEPs and solar cycle

II. Magnetic connection to Earth

C. Particle access to open field lines from the acceleration site to to 2.5 R_s

D. Particle access to Earth access to magnetic field line connected to 1 AU

D. Parker spiral magnetic field

D. Interplanetary coronal mass ejection (ICME)

Case studies on SEP propagation within ICMEs Torsti et al. (2004), Malandraki et al. (2005), Masson et al. (2012)

Statistical approach: ICME configuration and SEP propagation present study

ICME catalogue Richardson and Cane (2010)

'ICME' SEP category 20% within ICME

To study the physical relationship between in situ particles and coronal activity from a statistical perspective

To build the correlations between

SEP events (particle intensity) and solar activity (flare SXR flux and CME speed)

→ taking into account IP magnetic field (IMF) configuration

Statistical analysis

Peak particle intensity vs. CME projected speed

Standard deviation, method by Wall & Jenkins (2003)

0.6-0.7 (Kahler 2001, Gopalswamy et al. 2003, Cane et al. 2010)

Statistical analysis

Peak particle intensity vs. SXR flux

weak flare influence or transport effects?

0.4–0.6 (Kahler 1982, Cane et al. 2010)

III. Particle transport

Short rise time: less scattering

Rise time: signature of particle transport effects

Methods: a. steepest slope b. max–onset

subjectivity!

...

SEP rise time

Radio spectral analysis

Diagnostic

electron **acceleration**: flare reconnection vs. shocks electron **escape**: confinement vs. open field lines electron **propagation**: from low corona (cm- λ) to IP space (DH/km- λ)

Data

~10 ground-based radio observatories (spectra 20 MHz – 4.5 GHz; single frequency plots 0.2–15 GHz) Wind/WAVES (3 kHz–14 MHz)

Results

for all ICME and SoWi events

Radio spectral analysis

Radio spectral analysis

Results

I. Particle acceleration + particle escape (radio analysis)

- → good correlation of the particle intensity with CME speed for ICME/SoWi category
- → good/poor correlation of the particle intensity with SXR flare flux in ICME/SoWi category of SEP events
- \rightarrow type II (shocks) vs. III (flare) radio bursts: majority vs. all cases

II. Magnetic connection (IMF conditions)

- ightarrow 20% of all SEP events propagate within ICME
- ightarrow 30% in the vicinity of the ICME
- \rightarrow 50% along Parker spiral

III. Particle transport (rise time analysis)

→ **short/long** rise time for **ICME/SoWi** particle events: **weak/stronger** scattering

Interpretation

I. Particle acceleration + particle escape (radio analysis)

→ mixed flare/CME contribution to ICME/SoWi particle events II.+III. Magnetic connection + particle transport

 \rightarrow scattering

1. SEP amplitude: