LONG TERM PRECESSION MODEL

Jan Vondrák, Astron. Inst., Acad.Sci. Czech R., Prague jointly with N. Capitaine (Paris) and P. Wallace (Oxford)

Contents:

- Introduction;

- Motivation, goal, methods;

〉Solution for different precession parameters;
>Estimation of accuracy, comparison with other models;
-Conclusions.

Introduction:

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

- The axis of rotation of the Earth is not stable in the inertial reference frame:
- Under the dominant influence of the Moon and the Sun, it exhibits a rather complicated motion, called precessionnutation.
- Its very long-periodic part, precession (known already to Hipparchus, app. 150 B.C.), is the slow motion of the pole of Earth's rotation around the pole of the ecliptic. The angle between the two poles (obliquity) is approximately constant, roughly equal to 23.5°.
- The axis of rotation of the Earth makes one revolution around the pole of the ecliptic in about 26 thousand years (Platonic year).
- Pole of the ecliptic itself is not stable with respect to the stars - it exhibits so called precession of the ecliptic (formerly planetary precession). It is dominantly caused by the attractive forces of all bodies of the solar system.
- The axis of rotation of the Earth exhibits a motion around the moving pole of ecliptic under the torques exerted by the Moon, Sun, and planets on the rotating oblate Earth, called precession of the equator (formerly luni-solar precession).
- To account for precession, precession matrix must be formed:
- Usually, it consists of three to four rotations, using different sets of precession parameters (angles or direction cosines see later).

Motivation:

- All precession models used so far are expressed in terms of polynomial developments, no matter which precession parameters are used.
- Most recent model IAU2006 is very accurate, but usable only for a limited time interval (several centuries around the standard epoch J2000):
- its errors rapidly increase with longer time spans!
- In reality, precession represents a complicated, very longperiodic process, with periods of hundreds of centuries: this can be seen in numerically integrated equations of motion of the Earth in the solar system and its rotation.

Different models of precession X, Y (-200; +200 cy, about 1.5 Platonic years)

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

Goal:

- We assume that precession covers all periods longer than 100 centuries; shorter ones are included in the nutation;
- The goal is to find relatively simple expressions of different precession parameters, with accuracy comparable to the IAU2006 model near the epoch J2000.0, and lower accuracy outside the interval ± 1000 years (up to several minutes of arc at the extreme epochs ± 200 thousand years);
- New model was published recently:
- Vondrák J., Capitaine N., Wallace P., A\&A 534, A22 (2011).

Methods:

-We use the numerically integrated values (which were shown to be consistent with more recent values):

- of the precession of the ecliptic P_{A}, Q_{A} (Chambers 1999);
- of the general precession/obliquity p_{A}, ε_{A} (Laskar 1993)
> to calculate different precession parameters in the interval ± 200 thousand years from J2000.0, with 100year step;
\diamond Central part (± 1000 years from $\mathbf{J 2 0 0 0 . 0}$) is replaced by IAU2006 values;
- These series are then approximated by a cubic polynomial plus up to 14 long-periodic terms, so that the fit is best around J2000.0.

Precession parameters

a) input (from numerical integration):
$P_{A}=\sin \pi_{A} \sin \Pi_{A}, Q_{A}=\sin \pi_{A} \cos \Pi_{A}, p_{A}, \mathcal{E}_{A}$
b) derived (computed from spherical triangles on the right):
$X_{A}=\sin \theta_{A} \cos \zeta_{A}, Y_{A}=\sin \theta_{A} \sin \zeta_{A}-$ direction cosines $V_{A}=\sin \theta_{A} \sin z_{A}, W_{A}=\sin \theta_{A} \cos z_{A} \quad-\quad$ $\omega_{A}, \psi_{A}, \chi_{A}, \varphi, \gamma, \psi$ CIO locator s_{A}

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

Alternative possibilities of expressing precession matrix:

$$
\begin{aligned}
& \boldsymbol{P}=\boldsymbol{R}_{3}\left(-z_{A}\right) \boldsymbol{R}_{2}\left(\theta_{A}\right) \boldsymbol{R}_{3}\left(-\zeta_{A}\right) \\
& \boldsymbol{P}=\boldsymbol{R}_{3}\left(\chi_{A}\right) \boldsymbol{R}_{\mathbf{1}}\left(-\omega_{A}\right) \boldsymbol{R}_{3}\left(-\psi_{A}\right) \boldsymbol{R}_{\mathbf{1}}\left(\varepsilon_{0}\right) \\
& \boldsymbol{P}=\boldsymbol{R}_{\mathbf{1}}\left(-\varepsilon_{A}\right) \boldsymbol{R}_{\mathbf{3}}(-\psi) \boldsymbol{R}_{\mathbf{1}}(\varphi) \boldsymbol{R}_{\mathbf{3}}(\gamma)
\end{aligned}
$$

"Lieske"
"Capitaine"
"Williams-Fukushima"

All precession parameters expressed as:

$$
a+b T+c T^{2}+d T^{3}+\sum_{i=1}^{n}\left(C_{i} \cos 2 \pi T / P_{i}+S_{i} \sin 2 \pi T / P_{i}\right)
$$

where T is time in centuries since J2000.0, P_{i} are the periods and n is the number of periodic terms (8 to 14), coefficients c, d are very small.

All coefficients estimated by least-squares method, with weights equal to 10^{4} in the interval ± 1000 y from J2000.0, and $1 / T^{2}$ outside, to assure the best fit to the time series in the central part.

Two examples:

- Precession of the ecliptic:
\checkmark Direction cosines of the pole C - P_{A}, Q_{A};
>Precession of the equator:
$>$ Direction cosines of the pole P - X_{A}, Y_{A}.

Long-periodic expressions for $\boldsymbol{P}_{A}, Q_{A}["]$:

$$
\begin{aligned}
& P_{A}=5851.607687-0.1189000 T-0.00028913 T^{2}+101 \times 10^{-9} T^{3}+\sum_{1}^{8}\left(C_{i} \cos 2 \pi T / P_{i}+S_{i} \sin 2 \pi T / P_{i}\right) \\
& Q_{A}=-1600.886300+1.1689818 T-0.00000020 T-437 \times 10^{-9} T^{3}+\sum_{1}^{8}\left(C_{i} \cos 2 \pi T / P_{i}+S_{i} \sin 2 \pi T / P_{i}\right)
\end{aligned}
$$

$\begin{aligned} & \text { Term } \\ & \sigma_{3} \end{aligned}$		P_{A}	Q^{\prime}	P [cy]
	C_{1}	-5486.751211	-684.661560	708.15
	S_{1}	667.666730	-5523.863691	
$-s_{1}$	C_{2}	-17.127623	2446.283880	2309.00
	S_{2}	-2354.886252	-549.747450	
	C_{3}	-617.517403	399.671049	1620.00
	S_{3}	-428.152441	-310.998056	
- s_{6}	C_{4}	413.855033	-356.652376	492.20
	S_{4}	376.202861	421.535876	
	C_{5}	78.614193	-186.387003	1183.00
	S_{5}	184.778874	-36.776172	
	C_{6}	-180.732815	-316.800070	622.00
	S_{6}	335.321713	-145.278396	
	C_{7}	-87.676083	198.296701	882.00
	S_{7}	-185.138669	-34.744450	
	C_{8}	46.140315	101.135679	547.00
	S_{8}	-120.972830	22.885731	

Long-periodic expressions for $\boldsymbol{X}_{A}, \boldsymbol{Y}_{A}$ ["]:

$$
\begin{aligned}
& X_{A}=5453.282155+0.4252841 T-0.00037173 T^{2}-152 \times 10^{-9} T^{3}+\sum_{1}^{14}\left(C_{i} \cos 2 \pi T / P_{i}+S_{i} \sin 2 \pi T / P_{i}\right) \\
& Y_{A}=-73750.930350-0.7675452 T-0.00018725 T+231 \times 10^{-9} T^{3}+\sum_{1}^{14}\left(C_{i} \cos 2 \pi T / P_{i}+S_{i} \sin 2 \pi T / P_{i}\right)
\end{aligned}
$$

Estimation of accuracy at different epochs from the fit with numerically integrated values:

- In A\&A paper, we used a simple expression based on the average sigma and weights at different epochs;
> Here we use a rigorous procedure, based on full variance-covariance matrix, for each parameter separately.

Accuracy of different precession parameters

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

Comparison of $X_{A}, \boldsymbol{Y}_{A}$ for different precession models:

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

Close-up of the central part:

Differences of X, Y from integrated values ["]

8th Serbian-Bulgarian Astronomical Conference, Leskovac, May 2012

Conclusions:

- IAU2006 model:

\checkmark Analytical expressions of direction cosines X_{A}, Y_{A} provide high accuracy over a few centuries;
\diamond For longer periods, precession angles ζ_{A}, θ_{A} are preferable.
\checkmark New model of precession, valid over ± 200 millenia, is presented:

- Its accuracy is comparable to IAU2006 model in the interval of several centuries around J2000.0,
- It fits the numerically integrated position of the pole for longer intervals, with gradually decreasing accuracy (several arcminutes ± 200 thousand years away from J2000),
- The estimation of accuracy in A\&A paper is too conservative, it is probably one or two orders of magnoitude better.

Acknowledgments. This study was supported by the grant No. DO 02275 awarded by the Bulgarian NSF

