GRAVITATIONAL MICROLENSING AGN DUSTY TORUS

Marko Stalevski^{1, 2}, Predrag Jovanović¹, Luka Č. Popović¹, Maarten Baes²

¹Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia ²Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, 9000, Belgium

GRAVITATIONAL LENSING

Bending of light in the gravitational field of a massive object

Einstein, GTR, 1915: \rightarrow GL is achromatic

 $\Theta = \frac{4GM}{c^2R}$

Observable effects: change of source position; magnification; multiple images, arcs, rings...

STRONG LENSING

Ó	No.	(¢,	
J073728.45+321618.5	J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0
	Ó		0
J140228.21+632133.5	J162746.44-005357.5	J163028.15+452036.2	J232120.93-093910.2

Einstein Ring Gravitational Lenses Hubble Space Telescope • Advanced Camera for Surveys

STScI-PRC05-32

Lens is very massive object (galaxy, galaxy cluster...)

Multiple images, arcs, rings...

MICROLENSING

Lens is compact object (e.g. star)

- No deformations, no multiple images, only magnification
- Single microlens (1 caustic)
- Large number of lenses: magnification map (caustic network)

GL QSOs: STRONG + MICRO LENSING

MOTIVATION AND GOALS

R_{tor} > R_E;
Toy models

 \rightarrow No microlensing of dusty torus

BUT:

Recent observations:

 $R_{tor} \approx 1 - 6 \text{ pc}$ (Packham+ 2005, Tristram+ 2007, Alonso-Herrero+ 2011)

MCRT modeling of dusty torus: (Stalevski+ 2012)

- Wavelength dependency of size
- Dust density gradient
- \rightarrow more compact torus

GOALS: Investigate microlensing of AGN dusty tori in IR:

- Magnification amplitudes
- Time scales
- Influence of torus parameters

DUSTY TORUS: CLUMPY MULTIPHASE MEDIUM

AGN dusty torus

Stalevski et al. 2012, MNRAS, 420, 2756

https://sites.google.com/site/skirtorus/

AGN MICROLENSING – ACCRETION DISK

BUT: chromatic effects can appear due to the size and wavelength dependency of different emitting regions!

(Jovanović et al., 2008)

$\begin{array}{ll} \mbox{Microbild} Magnification map \end{array} & \begin{array}{ll} Z_{l} = 0.05 & \mbox{Convergence:} = 0.4 \\ Z_{s} = 2 & \mbox{Shear:} = 0.4 \end{array} \end{array}$

12 pc

And the second statement

The second se

Contraction of the Contraction of the Contract

l pe

MICROLENSING MAGNIFICATION MAP

Light curves of simulated microlensing events at different wavelengths (rest frame)

Magnification – wavelength dependence

Light curve - dependence on torus parameters

ML influence on entire IR SED

CONCLUSIONS

(Stalevski et al, submitted)

AGN dusty torus could be significantly magnified by microlensing, depending on the:

- Wavelength highest amplitudes in NIR, decreasing towards MIR and FIR
- Size of torus (R_{tor} < 10 pc)</p>
- Dust distribution parameters (p, q)
- \triangleright Lens system configuration (z_L , z_S , m_I)

► Typical time scales (rise time of HME): from several decades to hundreds of years → not a practical tool to study structure of dusty tori

But to be kept in mind when investigating flux ratio anomaly in lensed QSOs: even the lightcurves in IR could be contaminated by the microlensing!

THANK YOU FOR ATTENTION!