Electron-metal atom vapor cross sections maintained within BEAM database

B. P. Marinković ${ }^{1^{*}}$, D. Šević ${ }^{1}$, S. Ivanović ${ }^{1}$, N. Uskoković ${ }^{1}$, S. D. Tošić ${ }^{1}$, M. S. Rabasović ${ }^{1}$ and B. Predojević ${ }^{2}$
${ }^{1}$ Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
*E-mail: bratislav.marinkovic@ipb.ac.rs
${ }^{2}$ Faculty of Science, University of Banja Luka, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina

Belgrade Electron-Atom/Molecule (BEAM) database [http://servo.aob.rs/emol] has been created in order to curate cross sections for electron interactions with atomic and molecular particles and with the aim to be a part (node) of other portals, as well as to fulfil a broader task of maintaining A / M data in a comprehensive way. It became an integral part of two portals: RADAM (Radiation Damage) database [1] and VAMDC (Virtual Atomic and Molecular data Centre) [2,3]. A significant number of entries within BEAM belongs to electron cross sections for metal vapor atoms. Elastic cross sections ($\mathrm{Mg}, \mathrm{Hg}, \mathrm{Ag}, \mathrm{Yt}, \mathrm{Bi}, \mathrm{Rb}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Cd}$) and excitation cross sections ($\mathrm{Mg}, \mathrm{Hg}, \mathrm{Ag}, \mathrm{Yt}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Bi}$) have been compiled from the published refereed sources. Data entries within BEAMD follow IAEA classification scheme for processes [4] and use their standards for labelling of atomic states according Pyvalem as a Python package [5].

References

[1] S. Denifl, et al., J. Phys. Conf. Ser. 438012016 (2013).
[2] M. L. Dubernet, et al., J. Phys. B 49, 074003 (2016).
[3] D. Albert, et al., Atoms 8(4), 76 (2020).
[4] C. Hill, et al., INDC(NDS) Publication 0812, (IAEA- International Atomic Energy Agency - Nuclear Data Section, Vienna International Centre, 2020) https://nds.iaea.org/publications/indc/indc-nds-0812/
[5] https://pypi.org/project/pyvalem/ (accessed on 25.11.2021).

