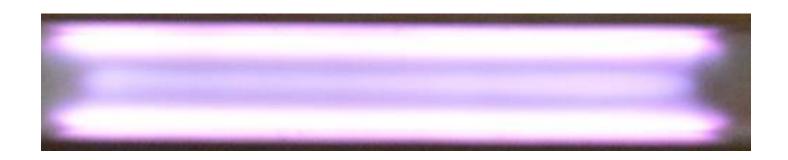
# SPECTROSCOPIC METHOD FOR NITROGEN IMPURITY ESTIMATION IN HELIUM ATMOSPHERIC DISCHARGE

N. Cvetanović, S.S. Ivković, B.M. Obradović

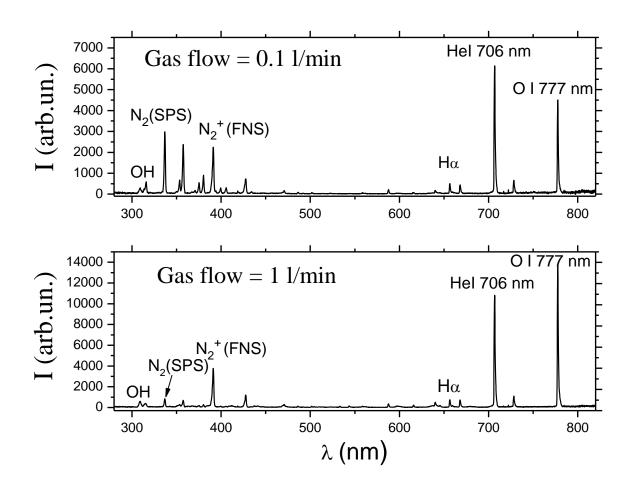
Faculty of Physics, University of Belgrade




A&M DATA 2023, Palić



## Cold Atmospheric pressure discharges


- Non-thermal or cold discharges, are presently most investigated and most promising laboratory plasma sources.
- In the last two decades they have been extensively studied both theoretically and experimentally.
- Plasma is strongly out of equilibrium with electron temperature of the order 10000 K while ions and atoms are at close to room temperature (therefore *cold*).
- Dielectric barrier discharges (DBDs) operating in noble gases mostly He and Ar.



## Why are impurities important in atmospheric discharges?

- Gas impurities within the working gas are crucial for barrier discharge operation mostly due to metastable processes.
- Numerous models have shown the influence of gas impurity level on discharge parameters.
- Impurities originate mostly from the air protruding through the chamber, gas supply system, but also some traces are always in the cylinder
- The impurity composition is mostly  $N_2$  but also  $O_2$  and  $H_2O$ .
- There is a necessity for a spectroscopic measurement of impurity level

- Our method is based on the intensity ratio of prominent nitrogen molecular band and strong helium line.
- $N_2$  (C<sup>3</sup> $\Pi u$ –B<sup>3</sup> $\Pi g$ , 0-0) at 337 nm, and the
- He I  $(3^3S-2^3P)$  at 706 nm.

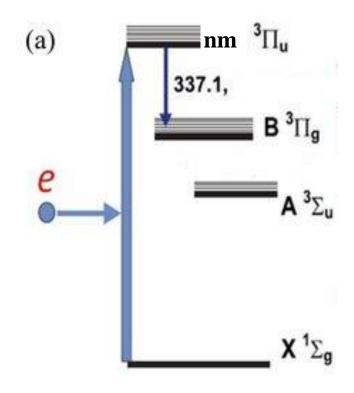


#### Collisional-radiative model:

- Collisional-radiative model was developed, and a functional dependance of intensity ratio on impurity at a given reduced electric field was numerically obtained.
- The ratio is obtained from the number density of exited species:

$$R_{337/706} = \frac{I_{N_2 \_ 337nm}}{I_{He \_ 706nm}} = \frac{hv_{337} \cdot A_{337} \cdot [N_2(C)]}{hv_{706} \cdot A_{706} \cdot [He3^3S]} = f\left(\frac{[N_2]}{[He]}\right) = f\left(N_2[ppm]\right)$$

## N2(C)


- In helium plasma, the nitrogen excited  $N_2(C)$  density can be calculated from processes involving electron excitation,  $N_4^+$  recombination, and pooling from  $N_2(A)$  metastable.
- When nitrogen is present as an impurity, the metastable pulling is negligible.

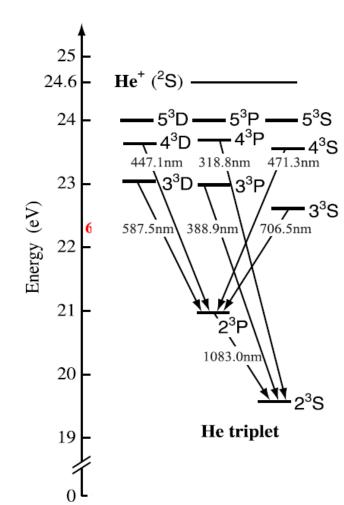
• 
$$e + N_4^+ \rightarrow N_2(C) + N_2$$

• 
$$e + N_2 \rightarrow N_2(C)$$

Steady state equation is valid in our conditions:

$$N_2(C) = \frac{k_1 n_e[N_2] + k_2 n_e[N_4^+]}{k_3 + k_4[N_2] + k_5[He]}$$




### He 3<sup>3</sup>S

• System of three time-dependent equations for the interconnected levels 3<sup>3</sup>D, 3<sup>3</sup>P and 3<sup>3</sup>S are:

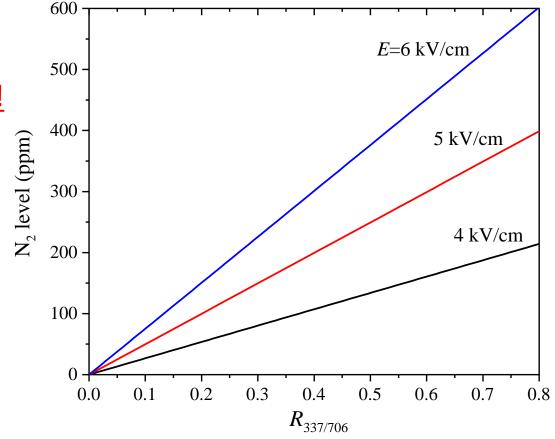
$$\frac{d[\text{He*}]}{dt} = k_e n_e [\text{He}] + k_{em} n_e [\text{He}_{\text{m}}] + k_{ext} [\text{He**}] [\text{He}] - [\text{He*}] \cdot \left( A + k_q [\text{He}] \right)$$

- Electron excitation from the ground level and from the metastable He 2<sup>3</sup>S
- excitation transfer from He 3<sup>3</sup>D and He 3<sup>3</sup>P

• The electron excitation rate constant from the ground level He  $(k_e)$  and metastable Hem  $(k_{em})$  are obtained from the BOLSIG- solver.

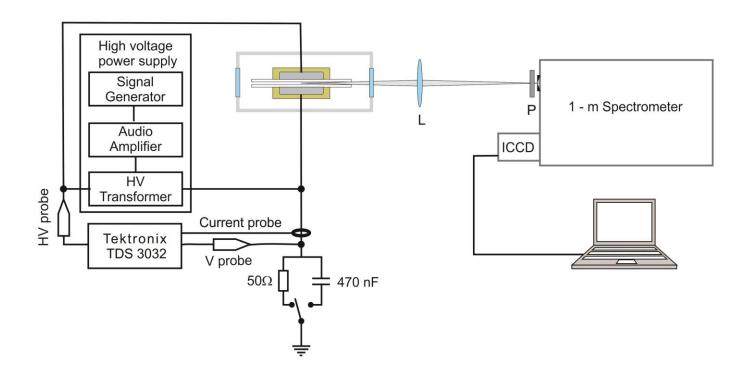


# • Electron collision excitation rates are obtained from Boltzman solver and depend on E/N.


| Process                  |                                | Value                                                         |  |
|--------------------------|--------------------------------|---------------------------------------------------------------|--|
|                          | deexcitation co                | pefficients                                                   |  |
| Spontaneous emission He: | $3^3S \rightarrow 2^3P$        | $A_{706} = 2.75 \times 10^7 \text{ s}^{-1}$                   |  |
|                          | $3^3P \rightarrow 2^3S$        | $9.47 \times 10^6  \mathrm{s}^{-1}$                           |  |
|                          | $3^3D\rightarrow 2^3S$         | $6.56 \times 10^7  \mathrm{s}^{-1}$                           |  |
| N <sub>2</sub> :         | $N_2(C) \rightarrow N_2(B)$    | $k_3 = 2.75 \times 10^7 \text{ s}^{-1}$                       |  |
|                          | SPS (0-0)                      | $A_{337} = 1.31 \times 10^7 \mathrm{s}^{-1}$                  |  |
|                          | Rate constants                 |                                                               |  |
| Excitation transfer:     | $3^{1}P\rightarrow 3^{1}S$     | $k_{ext} = 4.89 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$  |  |
|                          | $3^{1}D\rightarrow 3^{1}P$     | $k_{ext} = 1.81 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$  |  |
| Collisional quenching:   | $He(3^3S) + He$                | $k_a$ =0.53×10 <sup>-11</sup> cm <sup>3</sup> s <sup>-1</sup> |  |
|                          | $He(3^3P) + He$                | $9.8 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$             |  |
|                          | $He(3^3D) + He$                | 2.4×10 <sup>-11</sup> cm <sup>3</sup> s <sup>-1</sup>         |  |
|                          | $N_2(C) + N_2$                 | $k_4 = 1.14 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$      |  |
|                          | $N_2(C)$ + He                  | $k_5 = 1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$         |  |
| Electron recombinaton:   | $e + N_4^+ \rightarrow N_2(C)$ | $k_2 = 4.6 \times 10^{-6} \text{ cm}^3 \text{ s}^{-1}$        |  |
|                          |                                |                                                               |  |

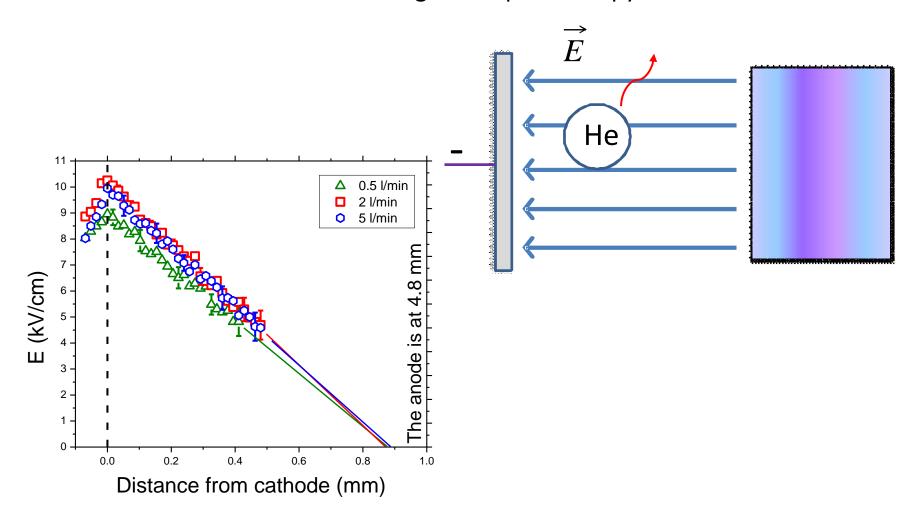
## Resulting equation:

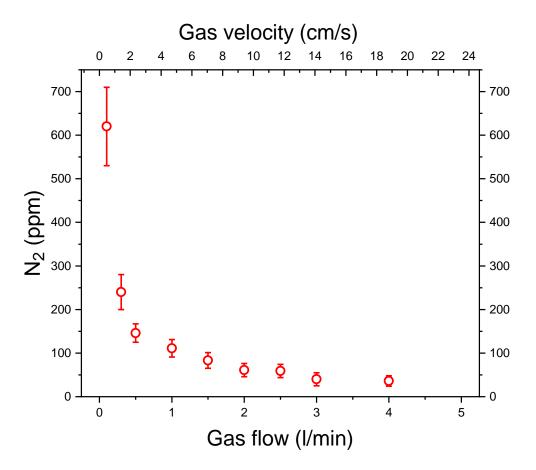
$$N_2[ppm] = \left(-327 + 9.6 \times \left(\frac{E}{N}\right)^{1.47}\right) \times R_{337/706}$$


Because of metastable excitaion it is is valid only E/N > 8 Td

## Linear, but field sensitive!




## Experiment: DBD with varying helium flow


- Investigation of discharge behavior with change of helium gas flow
- Electrical and spectroscopic measurements where performed
- Strong change of electric properties and line intensities can be attributed to different causes
- One possible explanation was the decrease of impurities with stronger gas flow



## **Experiment**

Electric field was measured using Stark spectroscopy





- Uncertainty is high at high N2 levels
- Minimum value corresponds to the level from the gas cylinder
- The obtained values corresponds well with discharge behavior via models
- It is evident that increase of gas flow reduces the impurity level

- The model needs further detailed verification
- This will probably be possible only for high ppm values

Ivković S.S., Cvetanović N. and Obradović B.M. Plasma Sources Sci. Technol. 31 095017 2022

Thank you for your attention!