13th Serbian Conference on Spectral Line Shapes in Astrophysics

# Radio-Loud Population A Quasars at High Redshift

Alice Deconto-Machado<sup>1</sup> Ascensión del Olmo Paola Marziani<sup>2</sup> Jaime Perea<sup>1</sup> Giovanna Stirpe<sup>3</sup> <sup>1</sup> IAA-CSIC, Spain; <sup>2</sup> INAF-Padova, Italy; <sup>3</sup> INAF-Bologna, Italy

Belgrade, August 26th 2021



# OUTLINE

The Unified Model of Active Galactic Nuclei An H-R Diagram for quasars? What about the radioloudness? **Observations and Sample** Analysis PKS2000-330 Q1410+036 Conclusions



## THE UNIFIED MODEL OF ACTIVE GALACTIC NUCLEI



## THE MAIN SEQUENCE An H-R diagram for quasars?

(Sulentic, J. W.; Marziani, P.; Dultzin-Hacyan, D., 2000)





#### Zamfir et al., 2010

### Optical plane of the **4DE1**

## **4DE1 MAIN PARAMETERS**

- FWHM(Hβ BC);
- RFell =  $I(Fell\lambda 4570)/I(H\beta);$
- BLUESHIFTS OF HIL;
- SOFT X-RAY PHOTON INDEX.

**Eddington ratio**,  $\lambda E =$  Lbol/LEdd, and **orientation** are thought to be the main physical drivers of the MS.





Marziani et al., 2018

### POP. A VS. POP. B

**Population A:** FWHM(H $\beta$ )  $\leq$  4000 km/s, and with ST defined by increasing RFeII from A1 with RFeII < 0.5 to A4 with 1.5  $\leq$  RFeII  $\leq$  2;

**Population B:** FWHM(H $\beta$ ) > 4000 km/s, and ST bins defined in terms of increasing  $\Delta$ FWHM(H $\beta$ ) = 4000 km/s.

**Pop. B** quasars are the ones with **high MBH** and **low**  $\lambda E$ , while **Pop. A** are **fast-accreting** with relatively **small MBH**.

#### Panda et al., 2019





### Hß profile evolution through different luminosity ranges



Sulentic et al., 2009



## WHAT ABOUT THE **RADIOLOUDNESS?**



$$R_{L} = f_{radio}/f_{optical}$$

### RL (jetted) quasars **are not distributed uniformly along the MS**. They are predominantly found in the Pop. B domain.



# OBSERVATIONS

VLT



## **OBSERVATIONS**

- ISAAC spectrograph at the VLT (slit width of 0.6'');

- Data archive from NVSS, FIRST, GTC, WISE, GALEX, PanStar, and others;









### SAMPLE

**SAMPLE:** High luminosity QSOs with z = 1.4 - 3.8, including radio-loud and radio-quiet sources.







### Optical:

UV:

## SAMPLE DISTRIBUTION IN THE MS





### Marziani et al., 2021 (subm.)



#### 13th SCSLSA | 2021

100

## SAMPLE DISTRIBUTION IN THE MS



#### 13th SCSLSA | 2021

### PKS 2000-330



### Q1410+096

## **SAMPLE DISTRIBUTION IN THE MS**



### PKS 2000-330



NVSS radio flux: 446.0±15.7 mJy Radioloudness parameter: 4118.05

### PKS 2000-330

- Radio-Loud
- Z = 3.789
- FWHM (H $\beta$ ) = 3138±276 km/s
- RFe = 0.62
- Pop. A2

### Q1410+096

- Radio-Quiet
- Z = 3.3240
- FWHM (H $\beta$ ) = 3394±299 km/s
- RFe = 0.65
- Pop. A2

## ANALYSIS

### Multicomponent Fitting of the optical region (Hβ+[O III]λλ4959,5007)

Non-linear multicomponent fitting including the continuum (a power law), a semi-empirical scalable Fe II emission template and the emission line components

#### **Broad Profile of Hβ**:

- **BC:** Broad component symmetric and unshifted profile (Lorentzian for Pop. A or Gaussian for Pop. B);
- **BLUE:** Blueshifted component, present mainly in Pop. A quasars;
- **VBC:** Very broad Gaussian redshifted component clearly observed in Pop. B quasars;
- NC: Narrower component superimposed to the broad emission line profile.





## ANALYSIS

### **Multicomponent Fitting of the UV region**

Following similar procedures as done for  $H\beta$  for the regions:

- 1900Å blend (Al III]λ1857 doublet, Si III]λ1892, and C
  III]λ1908);
- C IVλ1549+He IIλ1640;
- Si IVλ1397+0 IV]λ1402.







Barthel et al., 1990



### Optical



### $\bigcup\bigvee$













#### C IVλ1549



#### Si IVλ1397+0 IV]λ1402





#### C IVλ1549+He IIλ1640

#### Si IVλ1397+0 IV]λ1402



#### 13th SCSLSA | 2021 .

| Property                                              | Q1410+096 | PKS2000-330 |
|-------------------------------------------------------|-----------|-------------|
|                                                       | Optical   |             |
| $\overline{\text{FWHM}(\text{H}\beta_{\text{full}})}$ | 3394      | 3138        |
| $c(1/2, H\beta_{full})$                               | 54        | 28          |
| FWHM(H $\beta_{BC}$ )                                 | 3394      | 3138        |
| FWHM(H $\beta_{\rm NC}$ )                             | -         | 1082        |
| FWHM([O III] <sub>full</sub> )                        | 3363      | 1314        |
| $c(1/2,[O III]_{full})$                               | -1404     | -425        |
| FWHM([O III] <sub>BLUE</sub> )                        | 5573      | 1500        |
| FWHM([O III] <sub>NC</sub> )                          | 1379      | 1082        |
|                                                       | UV        |             |
| FWHM(Si IV <sub>BC</sub> )                            | 4053      | 1680        |
| FWHM(Si IV <sub>BLUE</sub> )                          | 6816      | 3039*       |
| FWHM(C IV <sub>full</sub> )                           | 6311      | 4950        |
| $c(1/2, C IV_{full})$                                 | -1746     | -1923       |
| FWHM(C IV <sub>BC</sub> )                             | 3293      | 3141        |
| FWHM(C IV <sub>BLUE</sub> )                           | 10882     | 7339        |
| FWHM(He II <sub>BC</sub> )                            | 3293      | -           |
| FWHM(He II <sub>BLUE</sub> )                          | 9368      | -           |
| FWHM(Al III <sub>BC</sub> )                           | 2605      | -           |
| FWHM(Si III] <sub>BC</sub> )                          | 2605      | -           |
| FWHM(C III] <sub>BC</sub> )                           | 2605      | -           |



### 1900Å blend

13th SCSLSA | 2021 •

(z = 3.7899)

| Property Q1410+096 PKS2000-330                                  |
|-----------------------------------------------------------------|
| Optical                                                         |
| $\overline{\text{FWHM}(\text{H}\beta_{\text{full}})}$ 3394 3138 |
| $c(1/2, H\beta_{full})$ 54 28                                   |
| FWHM(H $\beta_{BC}$ ) 3394 3138                                 |
| FWHM(H $\beta_{\rm NC}$ ) - 1082                                |
| FWHM([O III] <sub>full</sub> ) 3363 1314                        |
| $c(1/2,[O III]_{full})$ -1404 -425                              |
| FWHM([O III] <sub>BLUE</sub> ) 5573 1500                        |
| FWHM([O III] <sub>NC</sub> ) 1379 1082                          |
| UV                                                              |
| FWHM(Si IV <sub>BC</sub> ) 4053 1680                            |
| FWHM(Si IV <sub>PLUE</sub> ) 6816 3039*                         |
| FWHM(C IV <sub>full</sub> ) 6311 4950                           |
| c(1/2, C IV <sub>full</sub> ) -1746 -1923                       |
| FWHM(C IV <sub>BC</sub> ) 3293 3141                             |
| FWHM(C IV <sub>BLUE</sub> ) 10882 7339                          |
| FWHM(He II <sub>BC</sub> ) 3293 -                               |
| FWHM(He II <sub>BLUE</sub> ) 9368 -                             |
| $FWHM(Al III_{BC})$ 2605 -                                      |
| $FWHM(Si III]_{BC})$ 2605 -                                     |
| $FWHM(C III)_{PC}$ 2605 -                                       |



 $g \left\{ \left[ \frac{\text{FWHM(H}\beta)}{1000 \text{ km s}^{-1}} \right]^2 \left[ \frac{\lambda L_{\lambda}(5100\text{\AA})}{10^{44} \text{ erg s}^{-1}} \right]^{0.50} \right\}$  $+(6.91 \pm 0.02).$ 

ergaard & Peterson, 2006

|             | $\log(M_{{\rm H}\beta}/M_{\odot})$ |
|-------------|------------------------------------|
| PKS2000-330 | 9.21                               |
| Q1410+096   | 9.28                               |

 $\log\left[\frac{\lambda L_{\lambda}(1450\text{\AA})}{10^{44} \text{ km s}^{-1}}\right]$ M(C IV)) + 0.525,al., 2019

 $(L_{1700,44}^{0.035}) \log L_{1700,44} +$ WHM(AlIII)) +  $(0.51^{+0.05}_{-0.05})$ , l., 2021 (subm.)

13th SCSLSA | 2021 .

| Property                       | Q1410+096 | PKS2000-330 |
|--------------------------------|-----------|-------------|
|                                | Optical   |             |
| $FWHM(H\beta_{full})$          | 3394      | 3138        |
| $c(1/2, H\beta_{full})$        | 54        | 28          |
| $FWHM(H\beta_{BC})$            | 3394      | 3138        |
| $FWHM(H\beta_{NC})$            | -         | 1082        |
| FWHM([O III] <sub>full</sub> ) | 3363      | 1314        |
| $c(1/2,[O III]_{f,ull})$       | -1404     | -425        |
| FWHM([O III] <sub>BLUE</sub> ) | 5573      | 1500        |
| FWHM([O III] <sub>NC</sub> )   | 1379      | 1082        |
|                                | UV        |             |
| FWHM(Si IV <sub>BC</sub> )     | 4053      | 1680        |
| FWHM(Si IV <sub>BLUE</sub> )   | 6816      | 3039*       |
| FWHM(C IV <sub>full</sub> )    | 6311      | 4950        |
| с(1/2. С IV <sub>6.01</sub> )  | -1746     | -1923       |
| FWHM(C IV <sub>BC</sub> )      | 3293      | 3141        |
| FWHM(C IV <sub>BLUE</sub> )    | 10882     | 7339        |
| FWHM(He II <sub>BC</sub> )     | 3293      | -           |
| FWHM(He II <sub>BLUE</sub> )   | 9368      | -           |
| FWHM(Al III <sub>BC</sub> )    | 2605      | -           |
| FWHM(Si III] <sub>BC</sub> )   | 2605      | -           |
| FWHM(C III] <sub>BC</sub> )    | 2605      | -           |

Property

I(H $\beta_{BC}$ ) Shift(H $\beta_{BC}$ ) I(H $\beta_{NC}$ ) Shift(H $\beta_{NC}$ ) I([O III]<sub>BLUE</sub>) Shift([O III]<sub>BLUE</sub>) I([O III]<sub>NC</sub>) Shift([O III]<sub>NC</sub>)

 $I(C IV_{BC})$   $Shift(C IV_{BC})$   $I(C IV_{BLUE})$   $Shift(C IV_{BLUE})$   $I(Al III_{BC})$   $Shift(A III_{BC})$ 

| Q1410+096 | PKS2000-330 |
|-----------|-------------|
| Optical   |             |
| 1.0       | 0.93        |
| 54        | 28          |
| -         | 0.072       |
| -         | -46         |
| 0.73      | 0.42        |
| -1255     | -827        |
| 0.27      | 0.58        |
| -260      | -263        |
| UV        |             |
| 0.58      | 0.29        |
| 0         | 81          |
| 0.42      | 0.71        |
| -1525     | -1219       |
| 1.0       | -           |
| 0         | -           |

## CONCLUSIONS

- PKS2000-330 and Q1410+096 are very similar in the optical context. However, there is a clear difference seen in the UV;
- The difference may be a dynamic effect from the jet in the radio-loud source (PKS2000-330);
- The UV region of the radio-quiet (Q1410+096) suggests high metallicity, which can be related with a difference in the chemical evolution in both quasars.

