Hunting for Planet-mass objects in Extragalactic systems

13th Serbian Conference on Spectral Line Shapes in Astrophysics

Co-authors: Xinyu Dai, Eduardo Guerras University of Oklahoma

Credit: J. Skowron / Warsaw University Observatory

Speaker: Saloni Bhatiani

NASA/CXC/M.Weiss

Quasar microlensing

Study the structure of the

accretion disk around the SMBH.

Properties of mass distribution in

the lens galaxy.

How to probe planet mass objects?

Stellar microlensing events in the Optical light curves

Microlensing signatures in the X-ray spectrum

Ledvina et al. 2018

$$g = \frac{E_{obs}}{E_{rest}}$$

(Line shift parameter)

Passage of caustic causes differential magnification of g values

Caustic passing Event Line shift

[Popovíc et al. (2003, 2006), Jovanovíc et al. (2009)]

- Iron K line in the X-ray spectrum show large line peak variations and double line features
- Line peak is observed to vary over a large range of energies
- In non lensed AGNs, peaks of FeKalpha lines shows little variability
- Line variations are uncorrelated and detected with high frequency

1000 Rate (cnts s^{-1} keV⁻¹)

Rate (cnts s^{-1} keV⁻¹) 1000

Chandra observations

Chartas et al. 2017

Lensed systems

RX J1131-1231

Galaxy Lens $z_l = 0.29$ $z_s = 0.65$

Dai & Guerras 2018

J0158-4325	SDSS J1004+4112
alaxy Lens	Galaxy cluster Lens
$z_{l} = 0.31$	$z_{l} = 0.68$
z _s = 1.29	z _s = 1.73

G

Dai & Guerras 2018

Observed Line shift rate = <u>Observations with $>3\sigma$ line shift</u>

Bhatiani et al. 2019

 E_{obs} E_{rest}

g =

Total observations

Microlensing Analysis

Macrolens model (from literature)

- [Convergence] K
- [Shear] • *Y*
- [stellar surface mass density] \mathcal{K}_*

Number

Microlens model

[Mass functions]

[stellar mass fraction]

[planet mass fraction]

Mass

Bhatiani et al. 2019, ApJ

Magnification maps

 Generated random realizations of magnification maps

Edge detected maps

- Maps are convolved with kernels for different source sizes
- Caustic edge crossing probability calculated

Stars only

Stars +planets

400rg

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Free-floating planets or Primordial BHs?

Unbound planet-mass compact objects are universal in galaxies!

Bhatiani et al. 2019

What's ahead?

 Measuring the frequency of line shifts and microlensing analysis of Q2237+0305 and HE0435-1223 using Chandra archival data

Newer and deeper observations and improved modeling to impose tighter constraints

With LSST and Euclid, more interesting candidates for X-ray microlensing studies will be revealed.

Thank you!

Contact: salonibhatiani@ou.edu