Influence of the SMBBH to the broad line asymmetry in the case of lowmass ratio systems

Saša Simić ${ }^{1}$, Luka Č. Popović ${ }^{2}$, Anđelka Kovačević ${ }^{3}$, Dragana Ilić ${ }^{3}$
${ }^{1}$ Faculty of science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
${ }^{2}$ Astronomical opservatory, University of Belgrade, Volgina 7, 11000 Belgrade, Serbia
${ }^{3}$ Faculty of mathematics, University of Belgrade, Studentski trg 16, Serbia

We investigate broad line shapes emitted from the supermassive binaryblack holes (SMBBHs) for a special case of components having quite different masses,(mass ratio $q \sim 0.1$) with the accretion present only in the less massive component. We used the model presented in Popovic et al. (2021) thatassumes a complex broad line region (BLR), composed of a movingBLR of the less massive component and one circum-binary BLR. We analyze the $\mathrm{H} \beta$ line shapes and light curves taking the different totalmasses of the SMBBH, in the range 10^{6} to 10^{9} Solar masses. The asymmetry of the line shape is discussed in terms of expecteddifferences between SMBBH with one active component and a recoiling black hole.

Figure 1. Sketch of the binary system configuration with low q ratio.

Figure 2. Mean line profile (black line) and appropriate rms values (gray line) of $\mathrm{H} \beta$ line for three full orbits and for three different mass orders: a) $10^{6} \mathrm{M}_{\text {sun }}$, b) $10^{7} \mathrm{M}_{\text {sun }}$ and c) $10^{8} \mathrm{M}_{\text {sun }}$ and fixed mass ratio of $q=0.1$.

Figure 3. $\mathrm{H} \beta$ line shift (left panes) and appropriate LS periodograms (right panes) during three full rotations of the binary system, for BH masses given in Fig 2.

Figure 4. Same as in Fig. 3, but for $\mathrm{H} \beta$ line asymmetry. We presented asymmetry on left panes for 50\% (gray dots) and 25\% (orange dots) of line maximum, as well as appropriate periodograms given in right panes.

