What the submm spectral line emission in Circinus tells us about accretion and feedback in AGN

> Konrad R. W. Tristram EUROPEAN SOUTHERN OBSERVATORY

V. Impellizzeri , 张智昱 (Z.-Y. Zhang), E. Villard, Ch. Henkel, S. Viti, L. Burtscher, F. Combes, S. García-Burillo, S. Martín, K. Meisenheimer, P. van der Werf

1. Introduction: AGN & the torus

Relevant scales in nearby galaxies: milliarcseconds ♦ Can only be resolved using interferometers

sub-millimeter: ALMA

1. Introduction: Interferometry with the VLTI

- ESO's Very Large Telescope Interferometer (VLTI):
 - located on Cerro Paranal in Northern Chile
 consist of 4 UTs (8.2m) and 4 ATs (1.8m)

1. Introduction: Interferometry with the VLTI

- ESO's Very Large Telescope Interferometer (VLTI):
 - -located on Cerro Paranal in Northern Chile
 - consist of 4 UTs (8.2m) and 4 ATs (1.8m)
- Former instruments:
 - MIDI (MIR, 2 tel.)
 - -AMBER (NIR, 3 tel.)
- Current instruments:
 - PIONIER (NIR, 4 tel.)
 - GRAVITY (NIR, 4 tel.)
 - MATISSE (MIR, 4 tel.)

1. Introduction: The Circinus Galaxy

- Spiral galaxy SA(s)b, i = 65°
- Seyfert type 2
- 4 \times 10⁶ M $_{\odot}$ nucleus
- Distance ~4 Mpc
- \rightarrow 50 mas ~ 1 pc
- Circumnuclear starburst
- H₂O maser disk

1. Introduction: MIDI results

Tristram et al. 2014

1. Introduction: Radiative transfer modelling

1. Introduction: MATISSE results

Isbell et al. 2022

1. Introduction: MATISSE results

Isbell et al. 2022

1. Introduction: MATISSE results

Atacama Large Millimeter/submillimeter Array

- Located in northern Chile at 5000m altitude
- ESO / NRAO / NRC / NAOJ / ASIAA
- 66 antenna submm interferometer
- -0.32 to 3.6 mm
- -31 to 1000 GHz

2. Previous ALMA results

Detection of H₂O maser and continuum at 321 GHz

CO(3-2) & [C I](1-0) radiation-driven fountain

2. ALMA: Our Observations in band 7 and 9

- Observations targeted at CO(3-2) at 345GHz (868μm) and CO(6-5) at 691GHz (434μm)
- Continuum and other emission lines

2. ALMA: continuum emission B7 and B9

+ES+ ◎ +

2. ALMA: continuum emission B7 and B9

Find S-shaped morphology, plus core.

2. ALMA: Origin of the continuum emission

- Continuum in the submm has powerlaw spectral indices (for $F_v \propto v^{\alpha}$):
 - $-dust: \alpha = 3 ... 4$
 - -free-free: $\alpha = -0.1$
 - synchrotron: $\alpha = -0.7$
- At r > 6pc: 3.3 < α < 4.3
 ψ dust emission
- Nucleus: α ~ 2
 ♦ different origin?

2. ALMA: Origin of the continuum emission

♥ significant contribution from non-dust emission in B7

2. ALMA: Comparison to the MIR emission

Looking at two different dust components: hot vs. cold

3. ALMA line emission: CO morphology

3. ALMA line emission: CO morphology

♥ CO(3-2) hole due to excitation / self-absorption

Page 21

3. ALMA line emission: kinematics

♥ Kinematics dominated by rotation

3. ALMA line emission: kinematics

3. ALMA line emission: kinematics

3. ALMA line emission: kinematic fit

Kinematic fit using 3D-Barolo (Di Teodoro & Fraternali 2015)

3. ALMA line emission: kinematic fit

- Estimate disk scale height on scales of 10 parsec:
 - self-gravitating (thin) disk: h/r < 0.1
 - hydrostatical equilibrium h/r < 0.3:

Solution Solution Solution Solution Solution (h/r ~ 1) on (sub-)parsec scales

Conclusion: A picture of what is going on

- dust continuum: two components
 - cool dust in the midplane of a disk
 - warm dust in polar direction (wind)
- molecular material:
 - -dense and excited
 - -dominated by rotation
 - disk on 10 pc too thin for collimation

