Metal content along the quasar main sequence

Paola Marziani¹

and several collaborators of "the extreme team"

A. del Olmo², C. A. Negrete³, D. Dultzin³, M. D'Onofrio⁴, S. Panda⁵, M. Śniegowka⁶, E. Bon⁷, N. Bon⁷ graduate students: A. Deconto Machado², T. Buendia³, K. Garnica Luna³, A. Floris⁴

¹INAF - Osservatorio Astronomico di Padova, Padova, Italy
²Instituto de Astrofísica de Andalucía (CSIC), Granada, Spain
³Instituto de Astronomía, UNAM, México, D.F., Mexico
⁴Dipartimento di Fisica ed Astronomia "Galileo Galilei", U. di Padova, Padova, Italy
⁵Laboratório Nacional de Astrofísica, Itajubá, Brazil
⁶Tel Aviv University, Tel Aviv, Israel
⁷Astronomomical Observatory, Belgrade, Serbia

June 19-23, 2023 Bajina Bašta Serbia

June 12, 2023

A main sequence for quasars

* MS=Eigenvector 1; optical plane anti-correlation between strength of FeII λ 4570 and FWHM of H β ($R_{FeII} = FeII\lambda$ 4570/H β)

(e.g.: Boroson & Green 1992; Gaskell 1985; Sulentic et al. 2000a,b; Shen & Ho 2014; Rakshit et al. 2020; Wu & Shen 2023

* Spectral types can be identified as well as and two main populations of type-1 AGN: Pop. A and Pop. B (highand low-L/L_{Edd}), extreme Pop. A \Rightarrow candidate super Eddington

Sulentic et al. 2002; Sulentic et al. 2011; Shen & Ho 2014; Super-Eddington: Wang et al. 2013; Marziani & Sulentic 2014; Du et al. 2018

Zamfir et al. 2010: n ~ 470, z<0.7 from SDSS DR 5, log L ~ 45.5 [erg/s]

* Type-1 AGN multifrequency diversity is organized long a sequence driven by Eddington ratio / orientation

4DE1 of Sulentic et al. 2000a; summary table in Fraix-Burnet et al. 2017; L/L_{Edd}: Marziani et al. 2001; Boroson 2002; Shen & Ho 2014; Sun & Shen 2015; Panda et al. 2019

Constrains SED, wind/virialized emission, accretion process

The Main Sequence as an evolutionary scheme

Pop. B

From young / rejuvenated (NLSy1s in extreme Population A, including jetted sources) to massive, low Eddington radiators, "starving"

High M_{BH}, low L/L_{Edd}, older Weak winds, high EW [OIII]

(SH) MHML Low M_{BH}, high L/L_{Edd}, younger strong winds, low EW and blueshufted CIV and [OIII]

Pop. A.

Extreme Pop. A

Enriched Fuel via SN II/Ibc

Feedback: Highly accreting quasars, L/L_{Edd} ~ 1, with powerful winds,very metal rich

Starburst

Enrichment

R_{Fell}

Sulentic et al. 2000; Mathur 2000; Komossa et al. 2006; Xu & Komossa 2008; Berton et al. 2017; Fraix-Burnet et al. 2017

HST/FOS-based composites along the MS

* Composite spectra from a sample of ~130 radio-quiet HST/FOS and matching high S/N optical data, covering CIV, and Hβ for each object, z < 0.9, log L ~ 45-47 [erg s⁻¹] Sulentic et al. 2007

 Multicomponent analysis: line profiles modeled by virialized (Pop. A unshifted, symmetric Lorentzian; Pop. B double Gaussian; broad and very broad component) + blue shifted outflow emission (skew Gaussian) in high ionization CIVλ1549 (BLR) Sulentic et al. 2007; Marziani et al. 2010; c.f. Leighly & Moore 2004; Sulentic et al. 2007; Richards et al. 2011; for [OIII], Zamanov et al. 2002, Komossa et al. 2008, Zhang et al. 2011

Outflow ubiquitous but prominent at high R_{Fell} (extreme Pop. A)

Estimation of metallicity Z, density $n_{\rm H}$ and ionization U

- Coverage of a parameter space in n_H, ionization parameter U, metallicity Z, SED with CLOUDY 17.01
- * Diagnostic line ratios CIV λ 1549/HeII λ 1640 AIIII λ 1860/HeII λ 1640 (SiIV+OIV]) λ 1400/ HeII λ 1640 dependent on metallicity Z on a monotonic way
- ² Comparison between arrays of ~10⁴ predicted intensity ratios from photoionisation simulations using CLOUDY 17.02, and measured ratios sensitive to *n*_H, *U*, and *Z* Ferland et al. 2017

 $Z \pm \delta Z$ from $\chi^2(n, U, Z)$ within $n\sigma$ from minimum

Sniegowska et al. 2021 and in preparation; Marziani et al. 2020; Garnica et al. 2022

Measurement of emission line: profile ratios

Results consistent with line multi-component analysis

Jetted Population B: broad Balmer profiles, low R_{Fell}

Low Eddington ratio

NGC 1275 \equiv Perseus A

* Weak BLR emission with superimposed outflow emission in CIV and [OIII] Punsly et al. 2018

$$\frac{L(C \text{ IV})}{L(H\beta)} = 0.3 - 0.8, \frac{L(P\alpha)}{L(H\beta)} = 0.6 - 1.1,$$
$$\frac{L(Fe \text{ II})}{L(H\beta)} < 0.3,$$
$$\frac{L(He \text{ II}\lambda 1640)}{L(C \text{ IV})} = 0.5 - 1.0.$$

low Fell, low CIV

see Marziani et al. 2023a for a survey of type-1 AGN in cluster of galaxies

NGC 1275: solar or slightly subsolar metallicity, 0.1 $Z_{\odot} \leq Z \leq 1 Z_{\odot}$

Exploration of a parameter subspace in n_H, ionization parameter U, N_H, metallicity Z, using a carefully defined SED with CLOUDY 17.01

* Moderate density $n_H \sim 10^{10} \text{ cm}^{-3}$, and column density $N_H \sim 10^{22-23} \text{ cm}^{-2}$

Table 2 CLOUDY Simulations: NGC 1275										
1	2	3	4	5	6	7	8	9	10	11
Z	$\log n$	$\log N_H$	log r	$\log U$	$\log L(\mathrm{H}\beta)$	C IV/H β	$P\alpha/H\beta$	He II/C IV	Fe II/H β	Conformance
Metalicity	Number Density cm ⁻³	Column Density cm ⁻²	Radius cm	Ionization Parameter	Luminosity erg s ⁻¹	Target 0.3–0.8	Target 0.6–1.1	Target 0.5–1.0	Target <0.3	
0.1 0.1	9.75 9.75	22.7 23.3	16.5 16.5	-1.24 -1.24	40.76 40.80	1.63 1.47	0.99 1.09	0.44 0.43	0.03 0.06	No No
0.1	9.75	22.7	16.75	-1.74	40.76	1.63	0.99	0.44	0.03	No
0.1	9.75	23.3	16.75	-1.74	40.80	1.47	1.09	0.43	0.06	No
0.1	9.75	22.7	17.0	-2.24	40.76	1.63	0.99	0.44	0.03	No
J.1	10.0	22.7	16.5	-1.49	40.81	0.63	0.92	0.99	0.02	Yes
0.1	10.0	23.3	16.5	-1.49	40.84	0.59	1.01	0.97	0.05	Yes
0.1	10.0	22.7	16.75	-1.99	40.81	0.63	0.91	0.99	0.02	Yes
0.1	10.0	23.3	16.75	-1.99	40.84	0.59	1.01	0.97	0.05	Yes
0.1	10.0	22.7	17.0	-2.49	40.81	0.65	1.01	0.99	0.02	Yes
0.1	10.25	22.1	16.5	-1.74	40.87	0.20	0.84	2.64	0.02	No
0.1	10.25	23.3	16.5	-1.74	40.89	0.19	0.93	2.59	0.04	No
0.1	10.25	22.7	16.75	-2.24	40.87	0.20	0.84	2.64	0.02	No
0.1	10.25	23.3	16.75	-2.24	40.89	0.19	0.93	2.59	0.04	No
0.1	10.25	22.7	17.0	-2.74	40.87	0.20	0.84	2.59	0.02	No
0.1	10.5	22.7	16.5	-1.99	40.93	0.06	0.77	8.22	0.02	No
0.1	10.5	23.3	16.5	-1.99	40.94	0.05	0.87	8.08	0.03	No
0.1	10.5	22.7	16.75	-2.49	40.93	0.06	0.77	8.22	0.02	No
0.1	10.5	23.3	16.75	-2.49	40.94	0.05	0.87	8.08	0.03	No
0.1	10.5	22.7	17.0	-2.99 -2.99	40.93	0.06	0.77	8.22 8.08	0.02	No No
1.0	9.75	22.7	16.5	-1.24	40.75	11.8	0.33	0.07	0.04	No
1.0	9.75	23.3	16.5	-1.24	40.83	9.77	0.35	0.07	0.07	No
1.0	9.75	22.7	16.75	-1.74	40.82	7.67	0.60	0.08	0.08	No
1.0	9.75	23.3	16.75	-1.74	40.89	6.49	0.54	0.08	0.11	No
1.0	9.75	22.7	17.0	-2.24	40.76	3.85	1.02	0.18	0.19	No
1.0	10.0	23.3	16.5	-2.24 -1.49	40.78	11.2	0.32	0.18	0.27	No
1.0	10.0	23.3	16.5	-1.49	40.77	9.72	0.36	0.07	0.08	No
1.0	10.0	22.7	16.75	-1.99	40.85	5.20	0.52	0.11	0.07	No
1.0	10.0	23.3	16.75	-1.99	40.88	4.84	0.56	0.11	0.11	No
1.0	10.0	22.7	17.0	-2.49	40.79	1.91	0.97	0.32	0.22	No
1.0	10.0	23.3 22.7	16.5	-2.49 -1.74	40.81	9.33	0.35	0.52	0.22	No
1.0	10.25	23.3	16.5	-1.74	40.73	8.40	0.34	0.09	0.00	No
1.0	10.25	22.7	16.75	-2.24	40.81	3.55	0.55	0.17	0.08	No
	Toning and the second	A sealed								
1.0 1.0	10.25 10.25	22.7 23.3	17.0 17.0	-2.74 -2.74	40.83 40.85	0.76 0.73	0.91 0.94	0.73 0.73	0.12 0.18	Yes Yes
1.0	10.5	23.3	16.5	-1.99	40.68	6.86	0.41	0.13	0.11	No
1.0	10.5	22.7	16.75	-2.49	40.82	1.85	0.54	0.32	0.08	No
1.0	10.5	23.3	16.75	-2.49	40.83	1.81	0.54	0.32	0.12	No
1.0	10.5	22.7	17.0	-2.99	40.88	0.23	0.84	2.09	0.10	No

Approach must depend on spectral type, individual peculiarities

Population B radio-quiet and jetted (radio-loud) composites

Decomposition * BC / VBC

NV/CIV

CIV/Hβ

AIIII/CIV

AIIII/SiIII]

Sill]/CIII]

Hellλ4686/Hβ

CIV/Hellλ1640

SiIV+OIV]/CIV

SiIV+OIV]/HeII₂1640

5--

FWHM(Hβ) [km s 000 8000

low prominence of metal lines (with respect to H and He lines)

Jetted: definitely sub solar metallicities; RQ: solar

- * Systematic differences between BC and VBC (BLR and inner VBLR), consistent with virial velocity field and stratification in Pop. B
- * "Stratification" complicates
 estimates; a locally optimised
 emitting cloud model is needed

Table 2. Derived values of *U*, *Z*, $n_{\rm H}$ and 1σ ranges ^{*a*}.

Class	Region	log U	$\Delta \log U$	log Z	$\Delta \log Z$	logn _H	$\Delta \log n_{\rm H}$
RQ	Tot.	-2.25	-2.252.25	-0.30	-0.70-0.00	9.50	8.50–9.75
RQ	BLR	-2.25	-2.251.75	0.30	-0.70-1.00	10.25	9.25–10.75
RQ	VBLR	0.00	0.00–0.00	0.70	0.70–0.70	9.50	9.50–9.75
RL	Tot.		-2.000.75	-1.30	-2.001.30	8.75	7.00–9.75
RL	BLR	-1.50	-2.000.75	-1.70	-2.001.00	10.25	8.75–10.50
RL	VBLR	-0.75	-1.250.25	-2.00	-2.001.70	7.75	7.00–10.25

^{*a*}: ionization parameter *U*, abundance *Z* in solar units, and hydrogen particle density $n_{\rm H}$ in units of cm⁻³. The ranges are defined by the limiting elements of the model grid that are compatible with the minimum χ^2_{ν} within 1σ confidence level.

Z estimates well constrained

Population A: from modest to extreme R_{Fell}

Moderate to extreme (~1) Eddington ratio

Extreme Population A sources

- * Highest radiative output per unit black hole mass; most prominent wind components
- * Sample of 38 SDSS quasars at redshift z~2 suitable for eventual H β observations in the IR
- * Diagnostic line ratios
 CIVλ1549/HeIIλ1640
 AIIII λ1860/HeIIλ1640
 (SiIV+OIV])λ1400/HeIIλ1640

Virialized component with high Z; extreme U and n_H

(Negrete et al. 2012; Martínez-Aldama et al. 2018; Sniegowska et al. 2021; Garnica et al. 2022

Chemical feedback from luminous AGN

N PROGRESS

- * Important for galaxy evolution studies Choi et al. 2020; Nandi et al. 2023; Molero et al. 2023
- ★ Past and recent studies suggest high Z values (≥ 10 Z_☉) in the BLR Hamann & Ferland 1992; Nagao et al. 2006; Sulentic et al. 2014; Lai et al. 2022; Xu et al. 2018; for the virialized component: Sniegowska et al. 2021; Garnica et al 2022
- * Chemical abundance of the outflow component, from all measurable ratios: J09466-0124: X-SHOOTER VLT data; z ~ 2.2125 logL ~ 46; R_{Fell} ~0.2, Pop. A1, Z ~ 2-5Z₀ HE1347-2457, z ~ 2.534, logL ~ 47, R_{Fell} ~1.3, extreme Pop. A: Z ~50-100Z₀ Constraints on Z are especially stable; less so on U and n_H

Extreme chemical feedback from high accretors

Or Supernova pollution? Sniegowska, Garnica et al. in preparation

Differences imply over-abundances of AI and Si over C

* $Z(CIV/HeII) \sim 20 Z_{\odot}; Z(AIIII/HeII) \sim 50-100 Z_{\odot}$

* Systematic *Z* differences from different diagnostics?

* [AI/C] from Supernovæ: ~ 6 [AI/C]₀:

Free $n_{\rm H}, U$

Likely pollution

(Negrete et al. 2012; Martínez-Aldama et al. 2018; Sniegowska et al. 2021; Chieffi & Limongi 2004 for SN yields

Massive, mildly ionized outflows traced by CIV and [OIII]

- * Outflow dynamical parameters from CIVλ1549 can be computed knowing that the line is collisional excited like [OIII]λ5007
- * HEMS: ionized gas mass flow, kinetic power and thrust are extreme for extreme Population A, as $(\alpha L_{\text{line}} V^{n})$
 - * Kinetic power is still slightly below the values needed for host-spheroid coevolution

King 2003, Di Matteo et al, 2005, Hopkins et al. 2006,Hopkins & Elvis2010, Faucher-Giguère & Quataert 2012, Lapi et al. 2014, Costa et al. 2018,2020

* However, mildly ionized gas may contribute a substantial enrichment of the host: for HEMS, 100 Z $\odot \Rightarrow 1/2$ gas mass due to metals. dM/dt ~ 10 M $_{\odot}$ yr⁻¹ \Rightarrow M_Z ~ 5 10⁷ t_{7yr} M $_{\odot}$

Significant (chemical) feedback effect

Marziani et al. 2016a; 2017 cf. Cano-Díaz et al. 2012; Carniani et al. 2015; Zakamska et al. 2016; Bischetti et al. 2017; c.f. Vietri et al. 2020

Conclusion

* There is definitely a gradient of metallicity along the quasar main sequence, from 0.1 Z_{\odot} to several tens Z_{\odot} from Population B to extreme Population A

 Caveats: approach dependent on spectral types, dishomogeneities in the outflow components (Pop. A) stratification in the virialized component (Pop. B), role of turbulence (minor for UV, but relevant for FeII)

* High metal content of BLR outflowing gas (from a few times Z_{\odot} to $\leq 100 Z_{\odot}$) suggests a chemical feedback on the host galaxy, especially from extreme Population A (candidate super-Eddington) quasars at high *L*

