Modeling the broad emission line polarization in active galactic nuclei

Đorđe Savić1,2, Luka Č. Popović ${ }^{1}$, Lena Shablovinskaya ${ }^{3}$, Viktor Afanasiev ${ }^{3}$
${ }^{1}$ Astronomical observatory of Belgrade
${ }^{2}$ Observatoire astronomique de Strasbourg
${ }^{3}$ Special astrophysical observatory, Russia
June 7, 2019

Unified model

- BLR is not obscured type 1 objects, broad + narrow emission lines
- BLR is obscured - type 2 objects, only narrow emission lines

Observations in polarization

- A major break-through for the unified model for NGC 1068 (Antonucci \& Miller 1985)
- A periscope view of AGN in polarized flux

The importance of polarization

- Insight to the innermost parts of the central engine
- Sensitive to geometry and kinematics (Marin et al. 2012,2015,2018)
- Time lag studies (Rojas et al. 2018)

The importance of polarization

- Supermassive binary black holes signiture (Savic et al. 2018)
- Unique polarization angle profiles

Parallel and orthogonal polarization

Polarization in type 1s

- Polarization position angle (PA) rotation as evidence for equatorial scattering in type 1s
- Disk-like BLR with Keplerian motion
- Co-planar scattering region
- Weak polarization, typically few percents

Polarization in type 1s

Smith et al. 2005
Mrk 6
Afanasiev et al. 2014

Polarization of broad lines in type 1s

Method for determining SMBH masses

- Afanasiev \& Popovic (2015).

$\log \frac{V_{i}}{c}=a-0.5 \log \left(\tan \left(\varphi_{i}\right)\right)$

$$
M_{\text {BH-kep }}=1.53 \times 10^{8} \mathrm{M}_{\odot}
$$

$$
a=0.5 \log \frac{G M_{\mathrm{BH}} \cos ^{2} \theta}{c^{2} R_{\mathrm{sc}}}
$$

Method for determining SMBH masses

Method for determining SMBH masses

- Single epoch method.
- Good agreement with reverberation mapping method
- Single scattering approximation is well justified (Savic et al. 2018)
- BLR characteristics (Afanasiev et al. 2018)
- Can be applied for lines in different spectral range

Modeling (scattering-induced) polarization with STOKES

- Full 3D MonteCarlo radiative transfer.
- Various geometries for the emission/scattering regions.
- Polarization due to (multi) electron scattering and dust (Mie) scattering.
- Goosmann \& Gaskell (2007); Marin et al. (2012, 2015); Rojas et al. (2018)

Modeling (scattering-induced) polarization with STOKES

- Point-like source of isotropic continuum radiation, $F_{\nu} \propto \nu^{-2}$.
- Half opening angle of the BLR and SR are 15° and 35° respectively.
- Inner radius of the BLR from reverberation (Peterson et al. 2004, Kaspi et al. 2005, Bentz et al. 2006).
- Outer radius of the BLR-a due to dust sublimation $R_{\text {out }}^{\mathrm{BLR}}=0.2 L_{\text {bol, } 46}^{0.5}$. Bolometric correction from Runnoe et al. (2012).
- Inner radius of the SR from dust reverberation (Kishimoto et al. 2011, Koshida et al. 2014).
- Simultaneous $\mathrm{H} \alpha, \mathrm{H} \beta$ and Mg II emission
- Fountain-like emission of Mg II (Popovic et al. 2019)

Modeling (scattering-induced) polarization with STOKES

Modeling (scattering-induced) polarization with STOKES

Modeling (scattering-induced) polarization with STOKES

SMBH mass estimates - $\mathrm{H} \alpha$

SMBH mass estimates - $\mathrm{H} \beta$

SMBH mass estimates - Mg II

Observations

- SDSS quasar SBS 1419+538 ($z=1.862$)
- Spectropolarimetry with 6 m telescope of SAO RAS using modified version of the SCORPIO spectrograph (see Afanasiev \& Moiseev 2005, 2011).
- Polarization parameters correction for the interstellar polarization Afanasiev \& Amirkhanyan (2012)

SBS 1419+538

Summary

- Simple model for radiative transfer
- Keplerian motion + outflows
- Error bars in observations are higher than those in the model
- Test the method for other broad lines CIII] and CIV

Thank you for your attention

