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• Member of the Belgrade school of Plasma Spectroscopy 
along with N. Konjević, M. Dimitrijević, J. Labat and M. Platiša.

• Most notable publications concern experimental 
Stark broadening of Ne, Ar, alkaline elements etc.

• Established the method of Regularities of the Stark broadening and shift parameters 
of spectral lines in plasma (1985).

• Longtime member of scientific committees of ICPIG and ESCAMPIG.

• Host of ICPIG 1989 in Belgrade.

• Collaborator of Culham JET plasma facility in its pioneering days (1973)

• Collaborations with Meudon Observatory, Universities of Osaka and Nagoya, Minsk 
Academy of Sciences etc.

• Rector of the University of Belgrade 1998-2000.





• Laboratory for Plasma Physics

• New plasma sources for high energy plasma and environmental application

• Spectral line shapes with features applicable to astrophysical and fusion plasma

• Further work on Stark regularities, even including machine learning 



High energy plasma source  ne≈1017 cm-3   

Te≈Tion≈20000K
Plasma velocity ~100 km/s 
B≈ 1T,
I=80 kA

MPC- Compression plasma flow
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Various types of Dielectric barrier discharges
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Introduction – features of Plasma:

• Non-thermal, or cold, atmospheric discharges have recently emerged as the most 
investigated and most promising laboratory plasma sources. In the last two decades they 
have been extensively studied both theoretically and experimentally. 

• Plasma is strongly out of equilibrium with electron temperature of the order 10000 K 
while ions and atoms are at close to room temperature.

• The conditions for microreveresiblity are mostly not fullfed, and corona equilibrium 
guides the emissions.

• Plasma is always developing in time on various scales from ms to ns.

• It is inhomogeneous in space and time often (filaments or streamers) with sheaths near 
the electrodes.

• All this burdens diagnostic tasks and often the only choice is optical spectroscopy.



Line shapes:

• Doppler broadening is small (pm) Tg=350-500 K

• Van der Waals broadening often dominates the profile due to high pressure – 1 atm or 
even higher, at room temperature.

• Local field approximation is valid, so line intensity is determined by local electric field and 
electron density:

 I= 𝑐𝑜𝑛𝑠𝑡. ∙ 𝑆 𝐸 ∙ 𝑛𝑒 

• Line is broadened both by micro and macro-fields so there is Stark broadening and
 Stark spiting, sometimes simultaneously.
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pure CS
wL = wS + wVdW + wR

Computer simulation, new results by M A Gonzalez

Nikiforov et al. Plasma Sources Sci. Technol. 24 (2015) 034001

• Knowledge of gas temperature and pressure is crucial to extract Van der Waals  ~ p∙T-0.7

• Below plasma density of 1014 cm-3 fine structure must be taken into account.

Voigt approximation:

Gigosos et al. Spectrochim. Acta Part B 58 (2003) 1489



Problems in line analysis:

• Space inhomogeneity and Transient nature – fast time development of these plasmas 
pose limitations on line profile analysis. 

• Similarly to astrophysical plasmas, complex spectral line shapes are occasionally 
observed, that cannot be explained using standard models for line shape analysis e.g. 
Doppler or pressure broadening. 

• Advanced fitting procedures must be developed, often paired with fast imaging and 
electrical measurement to complete the unknowns in the method.

• The inhomogeneity of plasma in time in space, presence of strong sheaths, and line-of-
sight effects are mirrored in the shape of the spectral line.



SDBD with liquid electrodes

• Surface discharge configuration with liquid electrodes

• A dielectric cuvette is immersed in the liquid and the plasma develops 
along its outer surface between the two liquid levels. 

• It operates with different gas flows: Ar, N2, Air



Argon plasma above liquid

Video frame rate 30 fs/s 

- Cold mode: long branching microdischarges, high acoustic noise

- Hot mode: more stable, shorter filaments, low noise  



Argon plasma above liquid

Video frame rate: 1 fs/s 

Line radiation is integrated over a large number of current pulses 
and involves a spatial intensity distribution over an inhomogeneous 
and small plasma volume.



Line profiles (time integrated)
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FWHM=0.125 nm

- Instrumental FWHM=0.017 nm , 
- Van der Waals broadening calculated from gas temperature , typically  for H wVdW≈0.07 nm

- Asymmetric shapes indicate 
two-density plasma.



Time integrated results

- Gas temperature calculated from width Ar I 710 nm and OH band
- Electron density from Hβ

Cvetanovic et al. Plasma Sources Sci. Technol. 27 (2018) 025002



Time-selective measurements of two polarities

Two polarities were studied separately with a time window of 6-8 μs.

The aim was to examine the behavior of the negative and positive streamers.
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Very different profiles corresponding to very different plasma densities.

ICCD



1016 cm-3

1014 cm-3

Hβ “Cold mode”

Cvetanovic et al. Plasma Sources Sci. Technol. 27 (2018) 025002



Ar I 416 nm “Cold mode”

Cvetanovic et al. Plasma Sources Sci. Technol. 27 (2018) 025002



Cvetanovic et al. Plasma Sources Sci. Technol. 27 (2018) 025002

“Cold mode”



“Hot mode”

- No significant change with polarity
- Much smaller density



Cvetanovic et al. Plasma Sources Sci. Technol. 27 (2018) 025002



Krcma et al. Plasma Sources Sci. Technol. 27 (2018) 065001

Pin-hole based plasma source for discharge in liquids

A shock wave is formed with pressure ranging 2-16 MPa



Krcma et al. Plasma Sources Sci. Technol. 27 (2018) 065001

Plasma is formed inside the gas bubble (self-pulsing occurs).



HβHα

Krcma et al. Plasma Sources Sci. Technol. 27 (2018) 065001

• The recorded line profiles are time averaged over discharge evolution., 

• ne changes by more than two orders of magnitude.

• A two component profile is an approximation.
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Method by Dimitrijević & Yuberoa 

Yuberoa et al. Spectrochim. Acta Part B 107 (2015) 164

Van der Waals broadening is similar in H
α

 and H
β
:

The subtraction of Lorentzian widths eliminates the need for pressure information.

Pressure was subsequently estimated to 4-5 atm depending on the phase.

Pressure and gas composition inside the bubble are unknown



Krčma et al. Plasma Sources Sci. Technol. 27 (2018) 065001



Stark spiting of He lines in strong fields

Stark polarisation method developed and used for two decades at Faculty of Physics by 
Kuraica and Konjevic (1997). 

• Helium linear Stark effect: He I 492.2nm,  447.7 nm,  402 nm …

• Line shape depends on the discharge conditions (T, p etc.)

E

- He



Cvetanović et al. J. Phys D: Appl. Phys (2015)

• Electric field determines wavelength separation and intensity ratio.
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Stark shifting tested and method developed in low pressure glow discharge
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Example from a DBD discharge HeI 492 nm 1 atm



Atmospheric pressure RF discharge - coexisting α and γ-modes

Wang et al. Plasma Sources Sci. Technol. 28 (2019) 055010

Very narrow sheath <50 μm

Very fast development ~10 ns



The allowed He I 492 nm 4D and the forbidden 4F and 4P

Spectral distribution 
instead of a spectral line

Surprising line shape spreading ~2 nm
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Due to the narrow sheath, the entire field distribution 
is summed up in the line profile



• Fitting procedure provides only I(E)

• E(x) must be reconstructed
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Numerical procedure:
Using fast imaging to reconstruct the field distribution at a 
given time instance.

Wang et al.  Plasma Sources Sci. Technol. 28 (2019 ) 055010





Thank you for your attention



Cold Hot
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