Outflow morphology in the active galactic nucleus of Circinus galaxy

PROMIS project BOWIE, PI Marko Stalevski

Sladjana Knežević

Astronomical Observatory, Belgrade, Serbia

in collaboration with D. Kakkad, M. Stalevski, M. Kishimoto, D. Asmus, F. P. A. Vogt Kakkad et al., 2023, MNRAS, 519, 5324

Illustration: Monika Lang

Circinus galaxy

Credit: Schmidt J.

cone edge in H, and Ha 50-50

Credit: Tristram K.

ionisation con (obscured)

Credit: Stalevski M.

- Distance: 4.2 Mpc
- Closest Seyfert 2 galaxy.
- Circinus inclination of 65°.
- Best candidate to disentangle and understand polar dust and gas structure in AGN.

 Optical observations (HST, MUSE WFM): a one-sided and a wide-angled kpc-scale ionization cone traced by [OIII] λ5007 (Wilson et al., 2000, ApJ, 120, 1325; Mingozzi et al., 2019, A&A, 622, A146).

- IR observations (Polar emission dominating the total IR budget of the AGN):
- i. VLT/VISIR (~40 pc): polar IR emission in the form of a thin bar along the edge of the ionization cone (Asmus et al., 2016, ApJ, 822,109).

- IR observations (Polar emission dominating the total IR budget of the AGN):
- i. VLT/VISIR (~40 pc): polar IR emission in the form of a thin bar along the edge of the ionization cone (Asmus et al., 2016, ApJ, 822,109).
- ii. VLTI/MIDI (pc-scale): thin edge-on disk in the equatorial plane (dusty extension of the accretion disk) and a larger polar-elongated structure (Tristram et al., 2014, A&A, 563, A82).

- VLT/FORS2 polarimetry (Stalevski et al., 2023, MNRAS, 519, 3237): dusty cone (hyperboloid with an half-opening angle of 40°) illuminated by a tilted accretion disk (R~3pc, geometrically thin – width ~ 5°).
- 3D radiative trasfer modelling (Stalevski et al., 2017, MNRAS, 472, 3854; 2019, MNRAS, 484, 3334): all observations can be explained with a dusty wind forming a hollow cone which is anisotropically illuminated by the tilted accretion disk.

Dissecting the Circinus with VLT/MUSE-NFM

- Observations with AO, on-source $\sim 1.1h$; FoV: 7.5"x7.5"
- Spatial sampling 0.025" and spatial resolution (PSF) 0.1" (~ 2pc)
- Spectral coverage 4800 9300Å, spectral resolution \sim 150km/s (at [OIII] λ 5007)

Analysis & Results

- Non-parametric analysis:
- a) systemic flux (|v| < 300 km/s) & outflow flux (|v| > 300 km/s);
- b) v10 = blue-shifted velocity containing 10% of the overall line flux;
- c) w80 = width containing 80% of the line flux.
- AIM: mapping the morphology and kinematics of the ionized gas, tracing the dust extinction, determining the dominating source of ionization.

Velocity maps

The ionized gas co-rotates with the host galaxy.

Mass outflow rate

- Derived from [OIII] λ 5007.
- Instantaneous mass outflow rate: $M_{inst} = \Sigma_{pix} M_{out} v_{out} / \Delta R = 0.01 M_{\odot} yr^{-1}$
- Time-averaged mass outflow rate: $M_{Tavg} = M_{tot_out} < v_{out} > / R = 10^{-4} M_{\odot} yr^{-1}$
- [SII] λ 6716,6731 outflow flux ratio gives outflow density of ~ 200 cm⁻³ (median).

Star formation rate in Circinus 3-8 $M_{\odot}yr^{-1}$ (literature) --> the observed ionized outflow not expected to shut down star formation in pc scale.

Baldwin, Phillips & Terlevich (BPT) diagram

- AGN is the dominant source of ionization.
- Ionization by star formation (SF) is negligible.
- Current observations show no evidence of outflows triggering SF activity in the vicinity of the AGN.

Dust extinction map

- Dust extinction map derived from Balmer decrement.
- Assumed Calzetti et al. (2000) dust attenuation law with $R_{\nu}{=}4.05$ and $T_{e}{=}10$ 000K (typical for NLR).
- Av systemic reveals conical morphology.
- The origin of the collimated outflow could be due to a pc-scale radio jet that changes direction as it propagates through the ISM.
- The splitting of the collimated structure might be caused by a dust clump at this location.

Comparison to MUSE WFM observations

- Tuning fork not seen in MUSE WFM with lower spatial resolution ~ 0.5 ".
- The origin of the kpc-scale filaments might be in the fragmented arms of the tuning fork.

Summary

- Presented VLT/MUSE NFM observations that resolved the regions close to the AGN torus (spatial resolution 2 pc).
- We derived the properties of the **ionized gas outflow using the [OIII] λ5007** emission line.
- The systemic [OIII] flux shows conical morphology. The ionized gas co-rotates with the host galaxy.
- **"Tuning fork" structure** seen for the first time in the flux distribution of the outflowing component of the [OIII], v10 and w80. **Outflow is blue-shifted**.
- The ionized gas outflow is not expected to regulate star formation within a radius of ~100 pc from the AGN location.
- Systemic Balmer decrement shows the dust distribution concentrated along the ionization cone, while the outflowing shows a clump at the fragmentation site.
- Possible origin of the collimated outflow: **small scale radio jet interaction with ISM.**

THANK YOU FOR YOUR ATTENTION.