Spatial field reconstruction with INLA: Application to simulated galaxies

Majda Smole¹, João Rino-Silvestre², Santiago González-Gaitán², Marko Stalevski^{1,3}

1 Astronomical Observatory, Belgrade, Serbia; 2 CENTRA, Instituto Superior Técnico, Lisboa, Portugal; 3 Sterrenkundig Observatorium, Gent, Belgium

14th SCSLSA 2023

19 - 23 June Bajina Bašta, Serbia

SKIRT-INLA simulations

Post-processing technique for MCRT output

- SKIRT MCRT (Monte Carlo Radiative Transfer) code used for simulating radiation transfer in dusty astrophysical systems (Baes & Camps 2015; Camps & Baes 2015). http://www.skirt.ugent.be
- INLA Integrated nested Laplace approximation (Rue et al. 2009) is a computational method for approximate Bayesian inference of Latent Gaussian fields
- R-INLA package designed for modeling spatial data (Rue et al. 2017)
- SKIRT Auriga project -

https://www.auriga.ugent.be/Home--SKIRT-Auriga-Project.html synthetic UV-submm images of 30 simulated Milky Way type galaxies (Kapoor et al. 2021)

Fig. 1: HPN reference images of Au-16 galaxy at $\lambda = 7.88 \,\mu$ m, viewed at 'face-on' (right), 'edge-on' (middle) and 'intermediate' (right) angle. Colour indicates flux density in MJy/sr, given in logarithmic scale. Numbers on spatial maps indicate positions of pixels whose SEDs are shown in section[3.2.1]

Method

• We explore the potential of INLA method as a tool for enhancing the MCRT images

high photon number (HPN) reference images - 3×10^{10} photon packages SKIRT Auriga images

low photon number (LPN) input images - 3×10^8 or 3×10^9 photon packages

LPN input images require only few % of the HPN reference simulation execution time

LPN input image + INLA \Rightarrow HPN reference image

- INLA reconstructions are also time costly! How to reduce INLA reconstruction time?
 - Data sampling using a percentage of the original data cube as INLA input
 - 2 Dimensionality reduction techniques
 - PCA Principal Component Analysis; prcomp R function
 - NMF Non-Negative Matrix Factorization: nmf function in R

LPN input $+ PCA/NMF + INLA \Rightarrow HPN$ reference	e
(this work: Smole et al. 2022)	
LPN input $+ AE NN + INLA \Rightarrow HPN$ reference	
(Rino-Silvestre et al. 2022)	
	- 《티키《마키》 신문가 신문가 '문' 옷'

3/14

Optimal sampling percentage and number of PCA/NMF components - cut 600x600x50

The quality of INLA reconstructions (X'), compared to HPN reference images (X), is quantified by the normalized residuals, calculated as:

Residuals (%) =
$$|\frac{X' - X}{X}| \times 100\%$$
 (1)

msmole@aob.rs

SKIRT-INLA simulations

Integrated SEDs

Figure: Integrated SEDs for HPN reference, pure INLA and PCA/NMF+INLA reconstructions (upper panels) with the associated residuals (lower panels), for face-on (left), edge-on (middle) and intermediate (right) cubes.

				 100
msmole@aob.rs	SKIRT-INLA simulations	5/14		

イロト イロト イモト イモト

ъ

Single spaxel SEDs - face-on

Figure: Single spaxel SEDs for HPN reference (black) and LPN input (red) face-on cubes, together with pure INLA (green) and PCA/NMF+INLA (blue and cyan) reconstructions.

-> ∢ ⊒ >

Spatial reconstructions of the face-on cube

Figure: Spatial reconstructions (upper panels) with the associated residuals (bottom panels) at wavelength bin 7.88 μ m. Sample size: 25%, face-on cube.

글 > < 글 >

Spatial reconstructions of the face-on cube

Figure: Spatial reconstructions (upper panels) with the associated residuals (bottom panels) at wavelength bin 100.80 μ m. Sample size: 25%, face-on cube.

4 E M 4 E M

Image: Image:

Spatial reconstructions of the face-on cube

Figure: Spatial reconstructions (upper panels) with the associated residuals (bottom panels) at wavelength bin 515.36 μ m. Sample size: 25%, face-on cube.

4 E M 4 E M

Spatial reconstructions of the edge-on cube

Res. [%] median= 15

pure INLA

Res. [%] median= 47

PCA+INLA

NMF+INLA

Res. [%] median= 26

-25 -1.5 -2.5 -3.5 -4.5 -4.5 -2.5 -3.5 -0.0

Figure: Edge-on cube at wavelength bin 7,88 μ m.

Spatial reconstructions of the intermediate cube

Fig. 13: 'Intermediate' cube at wavelength bin 7.88 μ m

Figure: Intermediate cube at wavelength bin 7.88 μ m.

1113111010 8400.13	msmo	le@ao	b.rs
--------------------	------	-------	------

SKIRT-INLA simulations

< □ ► < /ੋ 11 / 14 トイヨトメラト

Summary

	LPN input		pure INLA		PCA+INLA		NMF+INLA		
angle	photon	median	input	median	time	median	time	median	time
	number	(%)	sample	(%)	(%)	(%)	(%)	(%)	(%)
	3×10^{9}	17.68	25%	9.97	110	10.68	32	11.35	40
face-			10%	11.61	89	12.21	26	12.79	35
on	3×10^{8}	60.97	25%	15.57	103	15.46	27	17.65	24
			10%	19.22	74	18.20	15	20.00	19
	3×10^{9}	30.23	25%	13.36	58	20.62	18	15.85	24
edge-			10%	15.67	43	22.54	15	17.5	20
on	3×10^{8}	96.88	25%	23.42	47	31.18	10	24.92	12
			10%	29.38	28	35.28	7	27.47	8
	3×10^{9}	24.91	25%	12.10	97	12.63	24	12.73	33
inter-			10%	14.57	76	14.41	21	14.51	26
mediate	3×10^{8}	86.13	25%	20.03	89	19.27	22	23.00	22
			10%	25.10	66	22.63	13	25.89	16

Median of the normalized residuals and the running times for each realization, compared to HPN reference.

$$t~(\%) = rac{t_{
m LPN~skirr} + t_{
m INLA}}{t_{
m HPN~skirr}} * 100,$$

msmole@aob.rs

SKIRT-INLA simulations

12/14

▲口▶ ▲御⋟ ▲臣▶ ▲臣▶

(2)

- Spatially integrated SED closely follow the reference SED for each of the employed methods, with median of the normalized residuals <0.3%
- Spatial modelling faint galaxy outskirts have the highest residuals
- Our method offers time-efficient reconstructions spatal residuals $\sim 10-30\%$ requiring $\sim 7-40\%$ of the HPN reference running time
- Optimized LPN simulations can help narrow down the parameters to then run a full HPN simulation.

Smole M., Rino-Silvestre J., González-Gaitán S., Stalevski M., 2022, A&A, 669, 152

イヨトマラト

- Baes M. & Camps P., 2015, Astronomy and Computing, 12, 33
- Camps P & Baes M., 2015, Astronomy and Computing, 9, 20
- Kapoor A. U., Camps P., Baes M., et al. 2021, MNRAS, 506, 5703
- Rino-Silvestre J., González-Gaitán S., Stalevski M., et al. 2022, Neural Computing and Applications, 35, 7719
- Rue H., Martino S. and Chopin N. 2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71, 319
- Rue H., Riebler A., Sørbye S. H. et al. 2017, Annual Review of Statistics and Its Application, 4, 395
- Smole M., Rino-Silvestre J., González-Gaitán S., Stalevski M., 2022, A&A, 669, 152