

X-ray Free Electron Laser Driven Resonance Pumping of Spectral Lines of Highly Charged Ions in Dense Plasmas

F.B. Rosmej^{1,2}

¹Sorbonne University, Faculty of Science and Engineering, Paris, France ²Ecole Polytechnique, LULI, Dense Plasma Atomic Physics – PAPD, Palaiseau, France

frank.rosmej@sorbonne-universite.fr

XIV SCSLS, 19-23/06/2023, Bajina Basta, Serbia

Contents

- I. Motivation: energy balance, opacity & line shapes
- **II.** Complex atomic configurations
- **III.** Two-electron transitions
- **IV. Probing matter with XFEL**
- V. Experiment: line shapes over 2 orders of intensity
- VI. Data analysis of two-electron transitions
- VII. Conclusion and outlook

I. Motivation

Energy balance in astrophysical objects

Radiation trapping in all spectral range determines the efficiency of the energy transport from the center to the surface

The energy transport in stars controls:

- Energy balance
- Temperature profile

Radiation of Star Surface

Opacity, Atomic Physics & Population Kinetics

$$d\tau_{\omega}^{(i,j)} = \kappa_{\omega}^{(i,j)} dl \propto \frac{f_{ij}}{\omega} \cdot n_i \cdot dl \cdot \varphi_{ij} (\omega, \omega_{ij})$$

 $\tau_{\omega}^{(i,j)}, \kappa_{\omega}^{(i,j)}: bound - bound opacity, absorption coefficient$

 $\hbar \omega$: photon energy of absorption $\hbar \omega_{ij}$: atomic absorption energy f_{ij} : oscillator strength n_i : absorbing lower state density L: source size

 φ_{ii} : absorption profile

Opacity is a complex measure composed from detailed atomic physics properties and population kinetics

Bound-bound opacity: strongly width-dependent

$$d\tau_{\boldsymbol{\omega}=\boldsymbol{\omega}_{ij}}^{(i,j)} = \kappa_{\boldsymbol{\omega}=\boldsymbol{\omega}_{ij}}^{(i,j)} \cdot dl \propto \frac{f_{ij}}{\boldsymbol{\omega}_{ij}} \cdot n_i \cdot \frac{1}{FWHM} \cdot dl$$

 $\tau_{\omega_{ij}}^{(i,j)}, \kappa_{\omega_{ij}}^{(i,j)}: b-b \ line \ center \ opacity, \ absorption \ coefficient$

 $\hbar \omega_{ij}$: atomic absorption energy f_{ij} : oscillator strength

n_i : absorbing lower state density dl : source size

FWHM: Full width at half maximum

The greater the broadening the smaller the local absorption coefficient !

Emissivity

 $\boldsymbol{\mathcal{E}}_{\boldsymbol{\omega}}^{(j,i)} \propto \boldsymbol{\omega} \cdot \boldsymbol{A}_{ji} \cdot \boldsymbol{n}_{j} \cdot \boldsymbol{\varphi}_{ji} \left(\boldsymbol{\omega}, \boldsymbol{\omega}_{ji} \right)$

 $\mathcal{E}_{\omega}^{(i,j)}$: emission coefficient $\hbar \omega$: photon energy of emission $\hbar \omega_{ii}$: central atomic transition energy A_{ii} : spontaneous transition rate *n_i*: upper level density ϕ_{ii} : emission profile

Emissivity is a complex measure composed from detailed atomic physics properties and population kinetics

Total absorption: bound-bound + free part

Radiation transport

Transport equation

$$\frac{\partial I_{\omega}}{\partial \tau_{\omega}} = -I_{\omega} + S_{\omega}$$

Source function $S_{\omega} = \varepsilon_{\omega} / \kappa_{\omega}$

Absorption coefficient
$$\kappa_{\omega}^{(total)} = \kappa_{\omega}^{(bb)} + \kappa_{\omega}^{(bf)} + \kappa_{\omega}^{(ff)}$$

Opacity
$$d\tau_{\omega} = \kappa_{\omega}^{(total)} d$$

=> Line transitions "bound-bound" are linked to the continuum via the absorption coefficient

X

II. Interest in complex configurations

F.B. ROSMEJ/Sorbonne University 10

What happens after absorption ?

After photo absorption....the photon is reemitted...absorbed...reemitted until it leaves the star...

Radiation of Star Surface

Energy transport in stars couples opacity τ and emission I over the total frequency band !

Solar opacity is a problem of absorption & re-emission in large energy bands where line shapes are important

Energy transport: large frequency band

Radiation transport

Absorption and emission in a large frequency band Atomic physics language

Transitions in atoms, partially and highly ionized ions

Transitions of simple and complex atomic configurations

Too many and to close transitions for detailed studies

III. Two-electron transitions

One photon + two-electron transitions Be-like

Low energy photon far away from "usual" one photon one electron transitions

Be-like two-electron transitions

K-alpha series transitions in plasmas

In plasmas, well separated twoelectron transitions are usually masked by usual oneelectron transitions from lower charge states

IV. Probing matter with XFEL: X-LIF

Laser induced fluorescence LIF in X-ray range: X-LIF

Laser induced fluorescence LIF lead to a "Revolution" in science and applications

- Study of electronic structure of atoms and molecules
- Detection of species
- Flow visualization
- Field effects
-

Laser induced fluorescence LIF in X-ray range: X-LIF

Laser induced fluorescence LIF lead to a "Revolution" in science and applications

- Study of electronic structure of atoms and molecules
- Detection of species
- Flow visualization
- Field effects
- • • •

Optical lasers: energy interval very limited, few eV

- All advantages of LIF &
- Inner-shell phenomena
- Isoelectronic sequences
- Ionized atoms
- Matter heating

Why X-LIF is difficult ?

Photo excitation:

the pump must be more effective than spontaneous emission

$pump \ rate > A$

pump

Scaling relations of energy and Einstein coefficients

 $I_{XFEL} \propto \Delta E^3$

radiative decay A

Energy $\propto Z^2$

Very large installations

 $I_{XFEL} \propto Z^6$

 10^{12} photons in 100 fs !

Synchrotrons will never make it !

X-rays: Synchrotrons & Free Electron X-ray Lasers XFEL: $10^{13} X$ – ray photons in 10...100 fs

Intensities: up to 10^{18} W/cm², sub-micrometer focusing

Photon density:
$$\tilde{N}_0 \approx \frac{N_{tot,\tau}}{0.76 \cdot A \cdot c \cdot \tau} \approx 6x10^{22} \frac{Photons}{cm^3}$$
 "solid" photon density

X-rays: Synchrotrons & Free Electron X-ray Lasers XFEL: 10^{13} X – ray photons in 10...100 fs

Intensities: up to 10^{18} W/cm², sub-micrometer focusing

Photon density:
$$\tilde{N}_0 \approx \frac{N_{tot,\tau}}{0.76 \cdot A \cdot c \cdot \tau} \approx 6x10^{22} \frac{Photons}{cm^3}$$
 "solid" photon density

XFEL brilliance: 10 orders of magnitude higher than synchrotrons

X-rays: Synchrotrons & Free Electron X-ray Lasers XFEL: 10^{13} X – ray photons in 10...100 fs

Intensities: up to 10¹⁸ W/cm², sub-micrometer focusing

Photon density:
$$\tilde{N}_0 \approx \frac{N_{tot,\tau}}{0.76 \cdot A \cdot c \cdot \tau} \approx 6x10^{22} \frac{Photons}{cm^3}$$
 "solid" photon density

XFEL brilliance: 10 orders of magnitude higher than synchrotrons

10 orders of magnitude in velocity

Not just more quick ...but completely different

Synchrotrons: rare "atomic" perturbations...

XFEL: Every atom is concerned New kind of matter samples !

V. Experiment

First X-LIF experiment to pump dense plasmas

F.B. Rosmej et al., Plasma Atomic Physics, Springer 2021.

Resonance pumping of dense Al-plasma with XFEL

Resonance pumping of dense Al-plasma with XFEL

Optical laser only: No emission from Be-like, B-like, C-like ions

With XFEL pump: At definite energies He-like....C-like ions are pumped and emit X-ray fluorescence

First demonstration of X-LIF at LCLS

X-LIF: atomic physics studies

VI. First data analysis

Experiment versus simulation

Usual one electron transitions (groups 1-7) in good agreement

Two-electron transitions in bad agreement

Line shapes measured over 2 orders of magnitude

Line shapes measured over 2 orders of magnitude in intensity in dense plasmas

Two-electron transitions in bad agreement

Configuration analysis

Theory: rel. HF with intermediate coupling + configuration interaction

$$1s^{2}2p^{2} {}^{3}P_{2} \rightarrow 1s^{1}2s^{2}2p^{1} {}^{3}P_{2} : 8.2352A$$
$$1s^{2}2p^{2} {}^{1}D_{2} \rightarrow 1s^{1}2s^{2}2p^{1} {}^{1}P_{1} : 8.2191A$$

Experiment: high-resolution X-ray spectroscopy+reference lines

$$1s^2 2p^2 LSJ \rightarrow 1s^1 2s^2 2p^1 LSJ : (8.208 \pm 0.0005)A$$

Complex calibration procedure: O. Renner

Very bad agreement in wavelengths and number of transitions !

Comparison with different methods

MCDF:

$$1s^2 2p^{2-1}D_2 \rightarrow 1s^1 2s^2 2p^{1-1}P_1: 8.2298A$$

FAC:

$$1s^2 2p^{2-1}D_2 \rightarrow 1s^1 2s^2 2p^{1-1}P_1 : 8.2280A$$

MZ:

$$1s^2 2p^{2-1}D_2 \rightarrow 1s^1 2s^2 2p^{1-1}P_1: 8.2205A$$

Experiment: high-resolution X-ray spectroscopy + reference lines $1s^2 2p^2 LSJ \rightarrow 1s^1 2s^2 2p^1 LSJ : (8.208 \pm 0.0005)A$

VII. Conclusion and Outlook

- Line profiles from complex configurations are of interest for energy transport that involves all bound and free states of atoms/ions
- Many overlapping transitions make analysis of single transitions from complex configurations difficult
- Two-electron transitions are located well outside the bunch of usual transitions; the number of transitions turns out to be rather small
- In usual plasmas, two-electron transitions are masked by "usual" transitions from lower charge states
- LIF in X-ray spectral range may select transitions of complex configurations in plasmas from one charge state only
- Successful demonstrations of X-LIF in dense plasmas
- Line shapes are measured over 2 orders of magnitude in intensity with excellent signal/noise ratio in dense plasmas
- Two-electron transitions are in bad agreement with theory

.... spectroscopy...

Springer Series on Atomic, Optical, and Plasma Physics 104

Frank B. Rosmej Valery A. Astapenko Valery S. Lisitsa

Plasma Atomic Physics

Frank Rosmej

Valery Lisitsa

Valery Astapenko

ISBN 978-3-030-05966-8, Heidelberg (2021)

D Springer

F.B. ROMEJ/Sorbonne University 45

Configuration interaction

No radiative decay from
$$1s^1 2s^{2-2}S_{1/2} \rightarrow \dots$$

Configuration interaction:

$$\Psi(1s^12s^2) = \alpha \cdot \Psi^{pure}(1s^12s^2) + \beta \cdot \Psi^{pure}(1s^12p^2)$$

Radiative decay:

$$A(1s^{1}2s^{2} \rightarrow 1s^{2}2p) \propto \beta^{2} \cdot \left| \left\langle \Psi^{pure}(1s^{1}2p^{2}) \right| r \left| \Psi^{pure}(1s^{2}2p^{1}) \right\rangle \right|^{2}$$

Mixed wavefunctions

$$\begin{split} 1s^{2}2p^{2} {}^{1}D_{2} &\to 1s^{1}2s^{2}2p^{1} {}^{1}P_{1}: \\ \Psi\left(1s^{1}2s^{2}2p^{1} {}^{1}P_{1}\right) \approx 0.97064 \cdot \Psi^{pure}\left(1s^{1}2s^{2}2p^{1} {}^{1}P_{1}\right) + \\ 0.23671 \cdot \Psi^{pure}\left(1s^{1}2p^{3} {}^{1}P_{1}\right) + \\ \Psi\left(1s^{2}2p^{2} {}^{1}D_{2}\right) \approx 0.999865 \cdot \Psi^{pure}\left(1s^{2}2p^{2} {}^{1}D_{2}\right) + \\ 0.00683 \cdot \Psi^{pure}\left(1s^{2}2p^{2} {}^{3}P_{2}\right) + \end{split}$$

Info configuration interaction $2s^2+2p^2$ **:**

$$\Psi(1s^2 2p^{2-1}S_0) \approx 0.96972 \cdot \Psi^{pure}(1s^2 2p^{2-1}S_0) + 0.24246 \cdot \Psi^{pure}(1s^2 2s^{2-1}S_0) + \dots$$

XFEL interaction with matter

XFEL interaction with matter

F.B. Rosmej et al., *Plasma Atomic Physics*, Springer 2021

The cartoon of XFEL interaction with matter

F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Plasma Atomic Physics, Springer 2021

Release of potential energy

Time dependent evolution.....

Equivalence: The XFEL removes so much and so *quick* "matter" that the whole structure becomes instable and is destroyed *after* a certain time

Annex

Laboratory measurements: Solar opacity has a problem ?

Fe accounts for about 1/4 of the solar opacity

Observed continuum stronger than predicted

Spectral windows more filled

Bound-bound emission less pronounced

Solar opacity problem

Photosphere spectral analysis: revised element abundances of C, N, O

Revised abundances disagree with helioseismic observations (e.g. sun quake), that determine the internal solar structure using acoustic oscillations

This problem *could* be resolved, if the true mean opacity would be higher by about 15 %

Measurements of the opacity in a laboratory experiment of Bailey et al. [Nature **517**, 56 (2015)] indicate opacities up to 4 times higher than predictedbut no consistent explanation/theory could be given....

Opacity data / simulations

Observed continuum stronger than predicted

Spectral windows more filled

Is our general understanding of opacity incomplete ?