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Introduction

Spectrum of the white dwarf SDSS J124851.31-022924.73.

Hydrogen Balmer series with a clear Zeeman splitting.

First analyzed by [Raji et al., 2021].

Used as the “experimental best fit” case at the 6th Spectral Line
Shapes in Plasmas (SLSP 6) workshop (Hyères, France, October
17 – 21, 2022).



Previous study

First analyzed by [Raji et al., 2021]:

Overall fit:
B = 460 T.

Hβ line-shape analysis:
ne = 1.5 × 1017 cm−3.

But the devil is in the details. . .



Data :: overview
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The WD atmosphere is optically thick (at ne ∼ 1017 cm−3,
α−1 ∼ 1 cm and 10 cm for Hα and Hβ, respectively);
self-absorption and re-emission take place.
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Lines are shifted: a combined effect of the diamagnetic effect
(blue shift, e.g., [Rosato, 2020]) and quadratic Stark effect
(red shift, e.g., [Stambulchik et al., 2007]).



Analysis :: Hα vs Hβ
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The π (central) component of Hβ is ∼ 2× wider than Hα’s.
Yet the σ (lateral) components of Hα and Hβ are similar.



Analysis :: Broadening of π and σ components
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Stark broadening of the Hα Zeeman triplet
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Stark broadening of the Hβ Zeeman triplet

Contrary to the simulations (e.g., [Rosato et al., 2009]), the
Stark broadening of the σ components of the Zeeman triplet is
stronger than that of π.
On the other hand, the triplet-component intensity ratios are
close to 1 : 1 : 1 – as if averaged over B⃗.

These observations suggest a wide distribution of B as a possible
explanation.



Simulations :: Scheme

F→ = F→(t)  as output

Molecular dynamics

Solve Schrödinger eq.

         for VI(t)

Fourier transform

   and averaging

N-body simulation

Line-shape calculation

Û(t) → <D→(t)>

A variant of computer simulation [Stambulchik and Maron, 2006].



Simulations :: Schrödinger solver

The Hamiltonian of the atomic system:

H = H◦ + V(t).

The perturbation V(t) is due to the plasma electric field (simulated
by the MD) and external electric and magnetic∗ fields. We solve
the Schrödinger equation

idΨ(t)/dt = HΨ(t)

using the time-development operator U in the interaction
representation:

idŪ(t)/dt = V(t)Ū(t).

∗Including the quadratic (diamagnetic) term.



Simulations :: FFT and averaging

The evolution of the dipole operator is then obtained:

D⃗(t) = U(t)†D⃗(0)U(t).

The Fourier transform of the dipole operator D⃗(ω) is further used
to calculate the line spectrum:

Iλ(ω) ∝ ∑
i, f
⟨|⃗eλ · D⃗fi(ω)|2⟩.

The angle brackets denote an averaging over several runs of the
code (which corresponds to the averaging over an ensemble of
emitters).



Results :: Hα and Hβ

All states with n = 2 . . . 6 are included in the Hamiltonian.

Calculations on a wide grid of B (0 – 2000 T) are performed.

Four models with different B-field distributions are tested:
FWHMB = 200 T, 250 T, 300 T, and 400 T.
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Hα modeling (ne = 1017 cm-3, T = 1 eV)
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Hβ modeling (ne = 1017 cm-3, T = 1 eV)



Results :: Total spectrum
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ne = 1017 cm−3, T ≈ 1 eV, B0 = 480 T, FWHMB = 250 T.



Conclusions

Hydrogen spectrum from a white dwarf (SDSS
J124851.31-022924.73) was re-analyzed and re-modeled.
No single set of the plasma parameters could satisfactorily
explain the entire spectrum.
A wide distribution of the magnetic field magnitudes was
assumed to achieve a good overall agreement.
Non-linear terms in the Stark and Zeeman interactions are
crucial for calculating line shapes (especially the shifts).

The work is still in progress. To be checked:
Radiative transport effects;
Effect of spiralling trajectories
[Rosato et al., 2018, Gomez et al., 2023];
Motional Stark effect [Rosato, 2023, Gomez et al., 2023];
Non-dipole interaction and penetration effects
[Gomez et al., 2021, Stambulchik and Iglesias, 2022].



Conclusions

Hydrogen spectrum from a white dwarf (SDSS
J124851.31-022924.73) was re-analyzed and re-modeled.
No single set of the plasma parameters could satisfactorily
explain the entire spectrum.
A wide distribution of the magnetic field magnitudes was
assumed to achieve a good overall agreement.
Non-linear terms in the Stark and Zeeman interactions are
crucial for calculating line shapes (especially the shifts).

The work is still in progress. To be checked:
Radiative transport effects;
Effect of spiralling trajectories
[Rosato et al., 2018, Gomez et al., 2023];
Motional Stark effect [Rosato, 2023, Gomez et al., 2023];
Non-dipole interaction and penetration effects
[Gomez et al., 2021, Stambulchik and Iglesias, 2022].



The end

Thank you for your attention!
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