STARK BROADENING DATA FOR SPECTRAL LINES OF RARE-EATH ELEMENTS: EXAMPLE OF Tb II, Tb III and Tb IV

Milan S. Dimitrijević
Astronomical Observatory, Belgrade, Serbia

The spectrum of HD 101065 may be the most unusual of all stellar spectra. Its discoverer, the Polish-Australian astronomer, Antoni Przybylski, described the object in a letter to Nature in 1961 as "A G0 Star with High Metal Content."
Tc and Pm identification by Cowley et al (2004) in Przybylski's star and HD 965

Element distribution in a typical cool Ap star HD 24712 - T. Ryabchikova

Maximal (upper line) and minimal (lower line) of the ratio of equivalent widths for different stellar types. Maximal and minimal value of EWSt/EW0 are given for 38 considered Nd II lines.

- THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 135:109-114, 2001
- STARK BROADENING EFFECT IN STELLLAR ATMOSPHERES: Nd II LINES
- L. C. POPOVIC , S. SIMIC,
- N_MILOVANOVIC. M. S.DIMITRI.IEVIC
β CrB (dotted) Przybylski's Star (solid)

T. Rvabchikova

Calculations: 6652-6660_ce_mf.out Observations: 5835-6810_my.obs

T. Ryabchikova: From 13700 classified Ce II lines in 3000-10000A region about 10000 lines are present in the spectrum of Przybylski's star with intensities higher than 5%.
All known Nd II (1284), Sm II (1327), Gd II (890)are present with intensities more than 20\%
Pr III has about 1000 classified lines and 300 are measured in PS

The 1957 milestone

REVIEWS OF Modern Physics

Synthesis of the Elements in Stars*

e. Margaret Burbidge, G. R. Burbidge, William A. Fowler, and F. Hoyle

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California
"It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

B2FH - 1957

- Hydrogen burning: responsible for most energy production in stars - all cycles synthesizing He from $\mathrm{H}+$ isotopes of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Ne}$ and Na (not produced in $\mathrm{He}+\alpha$)
- Helium burning: responsible for synthesis of C from $\mathrm{He}+$ production of $\mathrm{O}^{16}, \mathrm{Ne}^{20}$ and maybe Mg^{24} with extra $\alpha-\mathrm{s}$
- The α process: adding α particles to Ne^{20} to form $\mathrm{Mg}^{24}, \mathrm{Si}^{28}, \mathrm{~S}^{32}, \mathrm{~A}^{36}, \mathrm{Ca}^{40}$ (and probably Ca^{44} and Ti^{48})
- The e process: the equilibrium process (very high T and ρ) makes the iron-group ($\mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$)
- The s process: n-capture with emission of (n, y) on a long timescale ($100 \mathrm{yrs}-10^{5} \mathrm{yrs} / \mathrm{n}$ capture); $23<A<46+$ good fraction of $63<A<209$; abundance peaks at $A=90,138,208$
- The r process: n-capture on short timescales (0.01-10s); large fraction $70<A<209+$ U,Th + some light isotopes; abundance peaks at $A=80,130,194$
- The p process: p -capture with emission of ($\mathrm{p}, \mathrm{\gamma}$) or ($\mathrm{\gamma}, \mathrm{n}$); responsible for p -rich isotopes, with very low abundances

Stellar nucleosynthesis: a recap

Fuel	Main Product	Secondary Product	$\begin{gathered} \mathrm{T} \\ \left(10^{9} \mathrm{~K}\right) \end{gathered}$	Time (yr)	Main Reaction
H	He	${ }^{14} \mathrm{~N}$	0.02	10^{7}	$4 \mathrm{H} \xrightarrow{\text { cNo }}{ }^{4} \mathrm{He}$
He	O,	${ }^{18} \mathrm{O},{ }^{22} \mathrm{Ne}$ s-process	0.2	10^{6}	$\begin{aligned} & 3 \mathrm{He}^{4} \rightarrow{ }^{12} \mathrm{C} \\ & { }^{12} \mathrm{C}(\alpha, \gamma)^{16 \mathrm{O}} \end{aligned}$
		Na	0.8	10^{3}	${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$
	, Mg	AI, P	1.5	3	$\begin{aligned} & { }^{20} \mathrm{Ne}(\gamma, \alpha)^{160} \mathrm{O} \\ & { }^{2 \mathrm{Ne} \mathrm{Ne}(\alpha, \gamma)^{24} \mathrm{Mg}} . \end{aligned}$
		$\begin{aligned} & \mathrm{Cl}, \mathrm{Ar}, \\ & \mathrm{~K}, \mathrm{Ca} \end{aligned}$	2.0	0.8	${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$
Si,		$\begin{aligned} & \mathrm{Ti}, \mathrm{~V}, \mathrm{Cr}, \\ & \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni} \end{aligned}$	3.5	0.02	${ }^{28} \mathrm{~S} \mathrm{i}(\gamma, \alpha) \ldots$

Source: Alex Heger

Not all stars undergo the complete sequence \rightarrow mass!

Only massive stars go straight up to the end.

$\mathbf{M} / \mathbf{M}_{\text {sun }}$	Fuel	Products	$\mathbf{T} / \mathbf{1 0}^{\mathbf{8}} \mathbf{K}$
0.08	H	He	0.2
1.0	He	C, O	$2 \quad \mathrm{AGB}$
1.4	C	$\mathrm{O}, \mathrm{Ne}, \mathrm{Na}$	8
5	Ne	O, Mg	15
10	O	$\mathrm{Mg} \ldots \mathrm{S}$	20
20	Si	$\mathrm{Fe} \ldots$	30
>8	SNe	All!	

ATOMLC NLMBER

Pm I and Pm III

NLG NIST ASD Levels Output \times		+			
$\leftarrow \rightarrow \mathrm{C}$	- https://physics.nist.gov/cgi-bin/ASD/energy1.pl?encodedlist=XXT2\&de=08spec				
ASD	Data	Information			
	Lines Levels	List of Spectra	Ground States \& lonization Energies	Bibliography	Help

NIST Atomic Spectra Database Levels Data
Tb V 2 Levels Found
$z=65, \mathrm{Pm}$ isoelectronic sequence

Data on Landé factors and level compositions are not available for this ion in ASD

Primary data source		Query NIST Bibliographic Database for Tb V (new window)
		Literature on TbV Energy Levels

Configuration	Term	J	Level $\left(\mathrm{cm}^{-1}\right)$	Uncertainty $\left(\mathrm{cm}^{-1}\right)$	Reference
$4 f^{7} 5 s^{2} 5 p^{6}$	${ }^{8} \mathrm{~S}^{\circ}$	${ }^{7} / 2$	0		
Tb VI $\left(4 f^{7} 5 s^{2} 5 p^{5}\right)$	Limit	--	$[536000]$	25095	

If you did not find the data you need, please inform the ASD Team.

NIST Atomic Spectra Database Levels Data
Tb VI 2 Levels Found
$z=65$, Nd isoelectronic sequence

Data on Landé factors and level compositions are not available for this ion in ASD

| Primary data source | | Query NIST Bibliographic Database for Tb VI (new window) |
| :---: | :---: | :---: | :---: |
| | | Literature on Tb VIEnergy Levels |

Configuration	Term	J	Level $\left(\mathrm{cm}^{-1}\right)$	Uncertainty $\left(\mathrm{cm}^{-1}\right)$	Reference
$4 f^{f 5} 5^{25} p^{5}$			0	10	L582
Tb VII $\left(4 f^{5} 55^{25} 5 p^{30}\right)$	Limit	\ldots	(729000)	$\mathbf{3 6} 000$	L582

If you did not find the data you need, please inform the ASD Team.
ncm Data _Information Information

Tb IV 26 Levels Found
 $z=65, \mathrm{Sm}$ isoelectronic sequence

Data on Landé factors are not available for this ion in ASD
Primary data source Query NIST Bibliographic Database Martin et al. 1978 Literature on Tb IV Ener

Configuration	Term	J	$\begin{aligned} & \text { Level } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$
44^{6}	${ }^{7} \mathrm{~F}$	6	0.0
		5	2051.6
		4	3314.2
		3	4292.3
		2	4977.9
		1	5431.8
		0	5653.8
$4 f^{7}\left({ }^{8} S^{\circ}\right) 5 d$	${ }^{9} \mathrm{D}^{\circ}$	2	51404.0
		3	51800.8
		4	52399.6
		5	53316.6
		6	54882.5
$4 f^{7}\left({ }^{\text {s }}{ }^{\circ}\right) 5 d$	${ }^{7} \mathrm{D}^{\circ}$	5	62680.6
		4	63281.4
		3	63746.2

STARK WIDTHS OF DOUBLY- AND TRIPLY-IONIZED ATOM LINES \dagger

M. S. Dimitriević and N. Konjević
Institute of Applied Physics, 11001 Beograd, P.O. Box 24, Yugoslavia

(Receited 28 March 1980)

Abstract

In this paper, we report modifications of well known semiempirical and semiclassical approximation formulas for Stark line-width calculations. Comparisons with experiments for doubly ionized atoms yield, as an average ratio of measured to calculated widths 1.06 ± 0.31 for a modified semiempirical formula and 0.96 ± 0.24 for a modified semiclassical formula. For triply ionized atoms these ratios are 0.91 ± 0.42 and 1.08 ± 0.41, respectively. Comparison with other theoretical calculations have also been made.

1. INTRODUCTION

For evaluation of Stark widths and shifts of non-hydrogenic spectral lines of ionized atoms, various theoretical approaches have been used (see, e.g. Ref. 1). Comprehensive calculations of Stark-broadening parameters of spectral lines emitted by singly ionized atoms from lithium through calcium have been performed by Jones et al.; ${ }^{2}$ the results are included in Ref. 1. These calculations were based on a generalization of semiclassical methods, as used previously for

$$
\begin{aligned}
& \mathrm{w}_{\text {MSE }}=\mathrm{N} \frac{4 \pi}{3 \mathrm{c}} \frac{\hbar^{2}}{\mathrm{~m}^{2}}\left(\frac{2 \mathrm{~m}}{\pi \mathrm{kT}}\right)^{1 / 2} \frac{\lambda^{2}}{3^{1 / 2}} \cdot\left[\sum_{\ell_{\mathrm{i}} \pm 1} \sum_{\mathrm{L}^{\prime} J_{\mathrm{J}^{\prime}}} \Re_{\ell_{\mathrm{i}}, \ell_{\mathrm{i}} \pm 1}^{2} \tilde{\mathrm{~g}}\left(\mathrm{x}_{\ell_{\mathrm{i}}, \ell_{\mathrm{i}} \pm 1}\right)+\sum_{\ell_{\mathrm{f}} \pm 1} \sum_{\mathrm{L}_{\mathrm{f}^{\prime} \mathrm{J}_{\mathrm{f}^{\prime}}}} \Re_{\ell_{\mathrm{f}}, \ell_{\mathrm{f}} \pm 1}^{2} \tilde{\mathrm{~g}}\left(\mathrm{X}_{\ell_{\mathrm{f}}, \ell_{\mathrm{f}} \pm 1}\right)\right. \\
&-\left.+\left(\sum_{\mathrm{i}^{\prime}} \Re_{\mathrm{i}^{\prime}}^{2}\right)_{\Delta \mathrm{n} \neq 0} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}_{1}, \mathrm{n}_{\mathrm{i}}+1}\right)+\left(\sum_{\mathrm{f}^{\prime}} \Re_{\mathrm{R}_{\mathrm{f}}}^{2}\right)_{\Delta \mathrm{n} \neq 0} \mathrm{~g}\left(\mathrm{x}_{\mathrm{n}_{\mathrm{f}}, \mathrm{n}_{\mathrm{f}}+1}\right)\right],
\end{aligned}
$$

$$
\left(\sum_{\mathbf{k}^{\prime}} \Re_{\mathrm{kk}^{\prime}}^{2}\right)_{\Delta \mathrm{n} \neq 0}=\left(\frac{3 \mathrm{n}_{\mathrm{k}}^{*}}{2 \mathrm{Z}}\right)^{2} \frac{1}{9}\left(\mathrm{n}_{\mathrm{k}}^{* 2}+3 \ell_{\mathrm{k}}^{2}+3 \ell_{\mathrm{k}}+11\right)
$$

Simple estimates for Stark broadening of ion lines in stellar plasmas

M.S. Dimitrijević ${ }^{1}$ and N.Konjević ${ }^{2}$
${ }^{1}$ Astronomical Observatory, Volgina 7, YU-11050 Beograd, Yugoslavia
${ }^{2}$ Institute of Physics, YU-11001 Beograd, P.O. Box 57, Yugoslavia

Received April 15, accepted August 6, 1986

Summary. Simple analytical expressions for estimation of Stark widths and shifts of ionized atom lines have been derived from the low temperature limit of a modified semiempirical formula.

Key words: lines: profile - atomic and molecular data

1. Introduction

In stellar atmosphere calculations, collisional broadening paramoterc far alorae number oflinacof vorioucelementcore reauired
such a situation occurs, considerable simplification of the semiempirical method occurs (Griem, 1968). The aim of this paper is to obtain in analytical form the low temperature limit of the modified semi-empirical formulae (Dimitrijević and Konjević, 1980; Dimitrijevic and Kršljanin, 1986) which can be useful for simple estimates of Stark broadening parameters of singly and multiply charged ion lines in plasmas.

2. Theory

$$
X_{i j}=E_{/} / \mathbb{E}_{j}-E_{j} \leq 2
$$

$$
W(\AA)=2.2151 \times 10^{-8} \frac{\lambda^{2}(\mathrm{~cm}) N\left(\mathrm{~cm}^{-3}\right)}{\mathrm{T}^{1 / 2}(\mathrm{~K})}\left(0.9-\frac{1.1}{Z}\right) \sum_{\mathrm{j}=1, \mathrm{i}}\left(\frac{3 \mathrm{n}_{\mathrm{j}}^{*}}{2 Z}\right)^{2}\left(\mathrm{n}_{\mathrm{j}}^{* 2}-\ell_{\mathrm{j}}^{2}-\ell-1\right) .
$$

C. R. Cowley, Observatory, 1971, 139

$$
\Gamma_{\text {Stark }}=5.5 \times 10^{-5} \frac{n_{\mathrm{e}}}{\sqrt{T}}\left[\frac{\left(n_{\mathrm{eff}}^{\mathrm{up}}\right)^{2}}{z+1}\right]^{2}
$$

Regularities and systematic trends

Regularities within a given spectrum
-Multiplets
nlLJ - n'I'L'J'
-Supermultiplets
nIL - n'I'L'
-Transition arrays nl-n'l'
Homologous atoms and ions
Isoelectronic sequences
Other: e.g.: Dependence on the ionization potential
Dependence on polarisability of perturber

DIMITRIJEVIĆ, M.S., \& SAHAL-BRÉCHOT, S.:
$1984 a$ a ASTRON. ASTROPHYS. 136, 289 19846, J.Q.S.R.T. 31, 301

TRANSITION
Tb II $\left({ }^{6} \mathrm{H}^{\mathrm{o}} 15 / 2\right) 6 \mathrm{~s}_{1 / 2}(15 / 2,1 / 2)-\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{15 / 2}\right) 6 \mathrm{p}_{1 / 2}(15 / 2,1 / 2)$ 3934.1
$\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{15 / 2}\right) 6 \mathrm{~s}_{1 / 2}(15 / 2,1 / 2)-\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{15 / 2}\right) 6 \mathrm{p}_{3 / 2}(15 / 2,3 / 2)$ 3610.5
$\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{13 / 2}\right) 6 \mathrm{~s}_{1 / 2}(13 / 2,1 / 2)-\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{13 / 2}\right) 6 \mathrm{p}_{1 / 2}(13 / 2,1 / 2)$ 3938.3
$\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{13 / 2}\right) 6 \mathrm{~s}_{1 / 2}(13 / 2,1 / 2)-\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{13 / 2}\right) 6 \mathrm{p}_{3 / 2}(13 / 2,3 / 2)$ 3567.3
$\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{1 / 1 / 2}\right) 6 \mathrm{~s}_{1 / 2}(11 / 2,1 / 2)-\left({ }^{6} \mathrm{H}^{\mathrm{o}}{ }_{11 / 2}\right) 6 \mathrm{p}_{1 / 2}(11 / 2,1 / 2)$
$\quad 3966.1$
$\begin{array}{rr}\text { 5000. } 0.393 & 0.734 \\ \text { 10000. } 0.278 & 1.47 \\ \text { 20000. } 0.196 & 2.94\end{array}$
$\mathrm{T}(\mathrm{K}) \mathrm{W}(\mathrm{A}) \quad(3 \mathrm{kT} / 2 \mathrm{DE}) \max$

5000. 0.393	0.734
10000. 0.278	1.47
20000. 0.196	2.94

5000. $0.350 \quad 0.556$
5001. $0.247 \quad 1.11$
5002. $0.175 \quad 2.22$
5003. 0.3930 .529
5004. $0.278 \quad 1.06$
5005. 0.1962 .12

5000.	0.344	0.417
10000.	0.243	0.834
20000.	0.172	1.67
40000.	0.122	3.34

5000. 0.3970 .449
5001. 0.2810 .897
5002. $0.198 \quad 1.79$
5003. $0.140 \quad 3.59$

Tb III Stark widths for 88 lines

```
TRANSITION T(K) W(A) (3kT/2DE)max
Tb III 5d}\mp@subsup{}{}{8}\mp@subsup{\textrm{G}}{}{0}-6\mp@subsup{\textrm{p}}{1/2}{}\quad\mathrm{ 5000. 0.784E-01 0.215
    2369.9 10000. 0.554E-01 0.431
    20000. 0.392E-01 0.861
    40000. 0.277E-01 1.72
    80000. 0.196E-01 3.45
Tb III 5d 8}\mp@subsup{\textrm{G}}{}{0}-6\mp@subsup{\textrm{p}}{3/2}{}\quad\mathrm{ 5000. 0.707E-01 0.177
    2107.6 10000. 0.500E-01 0.354
    20000.0.354E-01 0.708
    40000. 0.250E-01 1.42
    80000. 0.177E-01 2.83
Tb III 5d}\mp@subsup{}{}{8}\mp@subsup{\textrm{D}}{}{0}-6\mp@subsup{\textrm{p}}{1/2}{}\quad\mathrm{ 5000. 0.881E-01 0.215
    2498.1 10000. 0.623E-01 0.431
    20000. 0.441E-01 0.861
    40000. 0.312E-01 1.72
    80000. 0.220E-01 3.45
Tb III 5d}\mp@subsup{}{}{8}\mp@subsup{\textrm{D}}{}{\circ}-6\mp@subsup{\textrm{p}}{3/2}{}\quad\mathrm{ 5000. 0.785E-01 0.177
    2208.4
    10000. 0.555E-01 0.354
    20000. 0.392E-01 0.708
    40000. 0.277E-01 1.42
    80000. 0.196E-01 2.83
```

$T(K) \quad W(A)$
(3kT/2DE)max
Tb IV $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}\right) 5 \mathrm{~d}^{9} \mathrm{D}^{0}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}{ }_{7 / 2}\right) 6 \mathrm{p}_{1 / 2}(7 / 2,1 / 2)_{3}$ 1338.7
5000. 0.275E-01 0.122 10000. 0.195E-01 0.243 20000. 0.138E-01 0.486 40000. 0.974E-02 0.973 80000. 0.689E-02 1.95

Tb IV $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}\right) 5 \mathrm{~d}^{9} \mathrm{D}^{0}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}{ }_{7 / 2}\right) 6 \mathrm{p}_{1 / 2}(7 / 2,1 / 2)_{4} \quad$ 5000. $0.273 \mathrm{E}-010.119$ 1324.5
5000. 0.273E-01 0.119 10000. 0.193E-01 0.239 20000. 0.136E-01 0.477 40000. 0.964E-02 0.955 80000. 0.682E-02 1.91
$\operatorname{Tb} \operatorname{IV} 4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}\right) 5 \mathrm{~d}^{9} \mathrm{D}^{0}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{\circ}{ }_{7 / 2}\right) 6 \mathrm{p}_{3 / 2}(7 / 2,3 / 2)_{5}$ 1232.3
5000. 0.255E-01 0.106 10000. 0.180E-01 0.211 20000. 0.128E-01 0.423 40000. 0.902E-02 0.845 80000. $0.638 \mathrm{E}-021.69$

Tb IV $4 f^{7}\left({ }^{8} S^{0}\right) 6 s^{9} S^{0}-4 f^{7}\left({ }^{8} S^{0}{ }_{7 / 2}\right) 6 p_{1 / 2}(7 / 2,1 / 2)_{3}$ 2331.8
5000. $0.161 \quad 0.122$
10000. $0.114 \quad 0.243$ 20000. 0.807E-01 0.486 40000. 0.570E-01 0.973 80000. 0.403E-01 1.95

Tb IV $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}\right) 6 \mathrm{~s}^{9} \mathrm{~S}^{0}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}{ }_{7 / 2}\right) 6 \mathrm{p}_{1 / 2}(7 / 2,1 / 2)_{4}$ 2289.3

5000.	0.156	0.122
10000.	0.111	0.243
20000.	$0.782 \mathrm{E}-01$	0.486
40000.	$0.553 \mathrm{E}-01$	0.973
80000.	$0.391 \mathrm{E}-01$	1.95

Tb IV $4 f^{7}\left({ }^{8} \mathrm{~S}^{0}\right) 6 \mathrm{~s}^{9} \mathrm{~S}^{0}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{0}{ }_{7 / 2}\right) 6 \mathrm{p}_{3 / 2}(7 / 2,3 / 2)_{5}$ 2027.1

Tb IV $4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{\circ}\right) 5 \mathrm{~d}^{7} \mathrm{D}^{\circ}-4 \mathrm{f}^{7}\left({ }^{8} \mathrm{~S}^{\circ}{ }_{7 / 2}\right) 6 \mathrm{p}_{3 / 2}(7 / 2,3 / 2)$ 1203.8

Tb IV $4 f^{7}\left({ }^{8} S^{0}\right) 6 s^{7} S^{0}-4 f^{7}\left({ }^{8} S^{0}{ }_{7 / 2}\right) 6 \mathrm{p}_{3 / 2}(7 / 2,3 / 2)$ 2056.2

Sc II 6 mult MSE L. Č. Popović and M. S. Dimitrijević, AAS, 120, 373, 1996 Sc III 10 mult. SCP M. S. Dimitrijević and S. Sahal-Bréchot,AAS, 95, 121, 1992 Sc X 4 mult SCP Dimitrijević M.S., SahalBréchot S., AAS, 131, 143, 1998
Sc XI 10 mult,SCP, Ibid
Y II 6 mult, MSE, L. Č. Popović and M. S. Dimitrifjević, AAS; 120, 373,-1996
V III 32 mulf SCD Dimitrínví M © Sahal-

Eu II 7 mult. MSE Popović, L.Č., Dimitrijević, M. S.,Ryabchikova, T., AA, 350, 719, 1999 Eu III 1 mult SMSE, Ibid Nd II 284 lines SMSE L. Č. Popović, S. Simić, N. Milovanović, M. S. Dimitrijević, ApJS, 135, 109, 2001
Yb III 4 lines MSE M. S. Dimitrijević, Atoms 7, 10, 2019
Tb II 5 mult. SMSE, This conference
Th III 88 mult SMSF Thic ennforance

THANK YOU FOR ATTENTION

