Implications of strong H₂ emission in astronomical environments

Boroson 2002, ApJ, 565, 78

Spectrum of a non-equilibrium gas

- Treat microphysics in detail
- Energetic radiation & particles interact with gas – ionization
- Ejected electrons heats, excite & ionize gas
- Ionization drives chemistry
- Full spectrum predicted

Continuum → **H I lines**

Shaw+05

Independent energy sources unlikely

Object	Heating erg cm ⁻² s ⁻¹	
	Radiative	Collisional
Earth	1 400 000	5.8
Supernova remnant	0.0028	7.9

Four ways to produce strong ionic and H₂ emission

 Advection of molecular gas into hot ionized regions

- "extra heating" heat deposition by shocks, dissipative MHD waves, etc
- Ionizing particles
- Very hard SED

Advective flow of H₂ into H⁺ region

Henney+ 07

Cool core cluster filaments

Thermal particles from surrounding hot gas

-Johnstone+ 07, Ferland+ 08, 09, Fabian+ 11

The Crab

- Graham+ 90 hard photons or ionizing particles
- Lo+ 10, 11a
 11b; H₂
 is warm and
 abundant

 A photonrich environment

Effects of SED

 Energetic photons entering molecular regions

AGN3 Chap 11

Progress so far

- Helix H₂ results from rapid advective flow of H₂ into the H⁺ region (Henney+ 07)
- Cool-core cluster filaments are photon starved, with H₂ (and optical) emission due to penetrating ionizing particles (Ferland+ 09, Fabian+ 11)
- The Crab Nebula is photon-rich, and has abundant ionizing particles. Photons sufficient?? (Lo+ 10, 11a, 11b).
- Is the Starburst/AGN/LINER sequence the hardening of the 100-500 eV SED?