

ix*Marseille

<u>J. Rosato¹</u>, N. Kieu¹, I. Hannachi¹, M. Koubiti¹, Y. Marandet¹, R. Stamm¹, M. S. Dimitrijević², Z. Simić²

¹Laboratoire PIIM, Aix-Marseille Université / CNRS, Marseille, France ²Astronomical Observatory, Belgrade, Serbia

11th SCSLSA – Sabac – August 23, 2017

Outline

1) The ITER project: an overview

2) Passive spectroscopy of current tokamak plasmas: line shapes, Stark broadening and Zeeman effect

3) Applying line shape models to stellar atmosphere spectra analysis

Aix*Marseille

Aim: demonstrate the feasibility of the fusion power

An international collaboration

- 1st controlled fusion burning plasma
- Presently under construction (France)
- First plasma in 2025

The ITER project (www.iter.org)

Research activities in France and in Europe

EUROfusion

From <u>www.euro-fusion.org</u>:

Aix*Marseille

"EUROfusion funds fusion research activities in accordance with the *Roadmap to the realisation of fusion energy*. The Roadmap outlines the most efficient way to realise fusion electricity by 2050."

ITER is a tokamak

Presentation of tokamak plasmas

Aix*Marseille

Center:

- T_e , T_i up to 10 keV
- fully ionized H plasma
- presence of multicharged impurity ions

Electron densities range in $\sim 10^{12} - 10^{15}$ cm⁻³ B-field: several teslas

Edge & divertor :

- temperatures down to 1 eV, and less
- a large amount of neutrals can be present ("detached regime")
- strong atomic line radiation

See Progress in the ITER Physics Basis, Nucl. Fusion special issue (2007)

Aix*Marseille

Spectroscopic observations are done in a wide wavelength range: IR, visible, X... Passive and active methods are used

An extensive set of diagnostics for ITER

Aix*Marseille

Spectral Regions Relevant to Spectroscopy of Magnetically Confined Plasmas

Spectral Region	Wavelength/Energy Region
Near infrared	700 to 1200 nm/1 to 2 eV
Visible	400 to 700 nm/2 to 3 eV
Ultraviolet	200 to 400 nm/3 to 6 eV
Vacuum ultraviolet	30 to 200 nm/6 to 40 eV
Extreme ultraviolet	10 to 30 nm/40 to 120 eV
Soft X-ray	0.1 to 10 nm/120 to 12000 eV

Fus. Sci. Technol. 53, Special Issue on Plasma Diagnostics for Fusion Research (2008)

Passive spectroscopy in current tokamaks

An analysis of line shapes, line widths, line intensities provides information on the plasma parameters

All elements are considered:

- neutral atoms and molecules (edge region, divertor)
- multicharged impurity ions (core region)

Hydrogen line spectra in tokamak edge and divertor plasmas

Hydrogen line spectra in tokamak edge and divertor plasmas

Aix<mark>*</mark>Marseille

Lines with a high principal quantum number have been observed in recombining ("detached") divertor plasma conditions Their width provides information on the electron density from Stark broadening analysis

The profile of lines with a low principal quantum number (especially Balmer α) is usually dominated by Doppler broadening and Zeeman splitting An analysis of the shape provides information on the neutral velocity distribution function f(v) in the edge region

Problematic issues for ITER

The divertor will be of large size Can one obtain local information on the plasma parameters?

The density will be sufficiently high so that low-n lines will be affected by both Doppler and Stark effects Can one extract reliable information on the neutrals' VDF f(v) from Doppler analysis?

Dα Zeeman-Lorentz triplet: both Doppler & Stark effects contribute to the broadeing

Welch et al., PoP (2001)

Problematic issues for ITER

Stark broadening modeling

ix*****Marseille

Stark broadening: when emitting a photon, an atom feels the presence of the charged particles located at vicinity

According to classical textbooks and articles (Baranger, Griem), the Stark-broadening problem amounts to solve the time-dependent Schrödinger equation for the evolution operator U(t)

$$i\hbar \frac{dU}{dt}(t) = (H_0 - \vec{d} \cdot \vec{E}(t))U(t)$$

A formal solution can be written using the Dyson series, but there is no explicit form applicable in a general case

Models and methods for ion dynamics

MMM (Model Microfield Method, 1970s):

- the E-field is described using a stochastic process
- the Schrödinger equation has an exact solution but this is not the true field

Numerical simulation (1970s):

- particle motion is simulated and the Schrödinger Eq. is solved numerically
- this method is more accurate (benchmark)
- it is time consuming

Models and methods for ion dynamics

Dy line (deuterium Balmer γ) $N = 10^{13} \text{ cm}^{-3}$ static ions $T_{e} = T_{i} = 1 \text{ eV}$ simulation $2x10^{4}$ Normalized line shape B = 0 1×10^{4} 0 0.0 -2.0x10⁻⁴ 2.0×10^{-4} $\Delta \omega$ (eV)

Aix*Marseille

The ion dynamics yields additional broadening

Models and methods for ion dynamics

Under high dynamics conditions (low n / low N_e / high T), numerical simulations are time consuming

Aix*****Marseille

The use of an impact collision operator for ions can be relevant See talk by R. Stamm tomorrow for a discussion Ly α lateral (Doppler free) Zeeman component

In general, all methods are complementary to each other; they can be tested by performing calculations under suitably chosen plasma conditions (e.g. SLSP code workshop, E. Stambulchik)

A database for ITER and current tokamaks

Tables for the first Balmer lines have been constructed using the numerical simulation method: from D α to D ϵ

*
$$T_e = T_i = 0.316, 1, 3.16, 10, \text{ and } 31.6 \text{ eV};$$

* $N = (1, 2.15, 4.64) \times (10^{13}, 10^{14}, 10^{15}), \text{ and } 10^{16} \text{ cm}^{-3};$
* $B = 0, 1, 2, 2.5, 3, \text{ and } 5 \text{ T}.$

Aix*Marseille

J. Rosato et al., JQSRT 187, 333 (2017)

EURO*fusion*

A FORTRAN program that reads the database is ready for use

Simulations of observable spectra

WEST tokamak (France)

Lines of sight

An analysis of $D\alpha$ observed in a simulated tokamak edge plasma

Aix*Marseille

Information on the densest location has been obtained Here, the adjustment assumes a Zeeman-Doppler model

Adapting the line shape models to stellar atmospheres

In stellar atmospheres, the temperature is low enough so that there is a significant amount of neutrals

The spectrum of A type stars presents hydrogen absorption lines which can be analyzed using the same tools as in magnetic fusion

Aix*Marseille

http://vizier.u-strasbg.fr/viz-bin/VizieR

Zeeman splitting in magnetic white dwarfs (N. Kieu et al., poster 13)

ix*****Marseille

 Atomic spectroscopy can be used as a diagnostic for tokamak edge and divertor plasmas
 Models involve both atomic and plasma physics

2) A problem inherent to hydrogen line shape modeling concerns the description of Stark broadening

3) Models can be applied both to magnetic fusion and astrophysics