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symmetry In time

® extracting energy from environment:
oscillators and generators, heartbeats

® bearing information:i.e circular orbit or
elliptical orbit, oscillations in CPUs
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fractals in time
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Figure 1.5.: Representation of AGN light curves at different time scales.
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Simple harmonic motion
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FIGURE 1: Position versus time for the simple harmonic oscillator.
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FIGURE 2: Damped harmonic motion with the amplitude decreasing
in time illustrating the time asymmetry of a Universe with friction.
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Period finding

Early 20th Century:
count the waves
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OPTICAL ANALOGY
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Perturbation
(!stochastic)
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System
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P x Radiation(t) x Observation(t) [Product]
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Light curves

Table 1. AGN sample for testing periodic variability. Columns are: object name, AGN type, redshift, total period of monitoring programs, the combined light
curve, mean sampling of the combined light curve, excess variance of the combined light curves, literature from which combined light curves were compiled.

Object name Type z Period CLC Sampling EV Reference®
(days)
3C390.3 BLRG 0.056  1994-2014  Continuum 5100 A 11.6 0.1623  1,2,3,4,5
Ha 34.5 0.1055
Hp 20.5 0.1099
1978-1996  Continuum 1370 A 64.4 0.1737 6,7
Lya 64.4 0.2539
CIv 64.4 0.2167
Arp 102b LINER  0.024 1987-2010  Continuum 6200 A 78.1 0.0080 8,9
Ha 77.0 0.0245
Continuum 5100 A 73.0 0.0073 8
Hp 60.0 0.0090 8
NGC 4151 Seyfert 1~ 0.003  1993-2006  Continuum 5100 A 16.1 0.2847 10,11, 12
1986-2006 Ho 39.6 0.0740
1993-2006 Hp 19.2 0.1367
NGC 5548 Seyfert 1~ 0.017  1972-2015  Continuum 5100 A 6.9 0.0648 13
Hp 11.2 0.0917
E1821+643 Quasar 0.297  1990-2014  Continuum 5100 A 68.4 0.0357 14
HA 68.4 0.0049
Continuum 4200 A 1149  0.0359
H~ 114.9 0.0356

@ (1) Dietrich et al. (1998), (2) Shapovalova et al. (2010a), (3) Dietrich et al. (2012), (4) Sergeev et al. (2011), (5) Afanasiev et al. (2015), (6) Wamsteker
etal. (1997), (7) O’ Brien et al. (1998), (8) Shapovalova et al. (2013), (9) Sergeev et al. (2000), (10) Kaspi et al. (1996), (11) Shapovalova et al. (2010b),
(12) Bon et al. (2012), (13) Bon et al. (2016), (14) Shapovalova et al. (2016).
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sampling:

11.6 days

34.5 days
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HYBRID METHOD: 3 STEPS

OUGP=0rnstein—Uhlenbeck Gaussian Process

OUGP(raw LC1)=OUGPI
OUGP(raw LC2)=OUGP2

CWT(a, b) =

1 v X0

§ % "' 4 .'lf] ’.'_:: ,‘. i ‘., 2‘ -‘I...: i;\”' 5 b .'l :. 5
/ x(t)elt AT TN,
V2ma J

envia, b) = \fTQU{H?\\"f[u.DHQ} + Im{[CWT(a,b)]?}.

O STEP:
raw data
preprocessing

| STEP

SpearmanCorrCoeff(env(OUGP1),env(OUGP2)|2 STEP




time series. The complex Morlet wavelet transform of time series
x(t) at an arbitrary scale a and for translational parameter b can be
formulated as (Yang & Tse 2005)

W 1 Heo .
CWTia;b) = \/27ra/ 2(t)elt/0)7/a/218% giw(i=b)/a gy
(1)

where i = /—1, w is frequency of the wavelet function and 3
1s parameter controlling the wavelet function’s shape. Physically,
CWT(a, b) is the energy of x(t) in scale a at time t = b. Then the
envelope (env(a, b)) of the wavelet coefficients are given by the
following metric expression (Yang & Tse 2005)

env(a,b) = /Re[(CWT(a,b))2] + Im[(CWT(a,b))2] (2)

where Re, Im stand for the real and the imaginary part of a given
CWT.

colors). Since the values of the position parameter b can be contin-
uously varied, and the scaling a can be defined from the minimum
(original signal scale) to a maximum chosen by the user, the CWT
can be seen as a function of scales a as it is shown in Grinsted et
al. (2004). For the Morlet wavelet the period is almost equal to the
scale (see Grinsted et al. 2004). So the x and y axes of the corre-
lation plots depicts scales a, or equivalently, periods. If the same



O STEP: PREPROCESSING DATA



What is GP

Gaussian
distribution

* is a distribution over vectors

*specified by mean and a covariance
(vectors) x~G(H, 2)

*the position of the random variables
xi plays the role of the index

Gaussian
Process

* is a distribution over functions

*specified by mean function and a
covariance function f~GP(m, k)

*the argument x of the random
function f(x) plays the role of the
index



Ornstein—Uhlenbeck
Gaussian Process

GP is defined by mean function and a covariance function variance

f~GP(m, K), m~0 r — x|

Kou(z,z') = O'QGXp(— l ),

length scale

Covariance of OU
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The simplified version of GPs (namely continuous
time first-order autoregressive process (CAR(1))) has
been used to model AGN continuum light curves (see
Pancoast et al. 2014, and reference therein). These
works used Ornstein - Uhlenbeck (OU) covariance func-
tion:

where a%) is characteristic time scale, 62 is variance of
driving noise, and At is the time separating two obser-
vations (see Kelly et al. 2014). (Note here that this
kernel can be written also in the form

|z — ]

Kou(z,2') = 0% exp ( 7 )7

where the parameter o2 is the variance and [ is the char-
acteristic length scale of the process, i. e. how close two
points 2 and z’ have to be to influence each other. The
OU process is a stationary GP. Since the information
about the underlying nature of AGN light curves is cru-
cial for probing their variability, Kelly et al. (2011),
Andrae et al. (2013) and Zu et al. (2013) modeled the
light curves as a parameterized stochastic process with
composite covariance functions. Following the same di-
rection of investigations, we applied some of stationary
and non-stationary composite covariance functions. As
they are a linear combination of other simpler covari-
ance functions, we are able to incorporate insight about
periodicity, red noise and nonstationarity of underlay-
ing processes.

In our research we employed two kind of kernel fam-
ilies: stationary - already mentioned OU precess, the
squared exponential (SE):

Kan(Af) = &_2 —(aoAt)?
SE( t) = 20[0 exp )

which alternative representation is

Nz =2

)

Ksg(z,2') = 0% exp (

rational quadratic (RQ)

82 Qd|At?

with an alternative form
|z —a'?

Krq(z,2') = o*(1 + 3

~ )" Y witha = 2;

non-stationary — the standard periodic kernel (StdPer)

o 2sin?(Z41)
Kstaper(At) = 20 exp ( - T)QP)
ao

with alternative version

92 sin?(=z=2)
Ksaper(z,2") = 0% exp ( — %);

and Brownian motion (Brw, red noise or Wiener pro-
cess)
~2

Kprw (At) = ;‘Emm(m),

which alternative form is

2

Kpiw(z,2') = o”min(x, 2").
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that OU models can be a degenerate descriptors. A
CARMA models might serve better for this purpose,
particularly as the red noise terms in them can produce
quasi-periodicities which are missing from simple OU

models. For the purpose of CARMA modeling we used
Brandon Kelly carma_pack Python package available on

https://github.com/brandonckelly /carma_pack. CARMAJ}

models lightcurve as sum of (deterministic) autoregres-
sion plus (random) stochastic noise. The CARMA
model order input is optional. We automatically choose
the CARMA order (parameters (p,q)) by minimizing
the AIC (Aikake Information Criterion). Also, the
residuals from the one-step-ahead predictions standard-
ized by their standard deviation were uncorrelated.
Random light curves were sampled with built in func-
tions in GPy and farm_pack packages.

We recalculated periods of each real and simulated
curve (see Figure 2) by means of Bayesian formalism for
the generalized LS periodogram (BGLS Mortier et al.
2015), which gives the probability of signal’s existence
in the data. It can be seen that powers of BGLS peaks
of OU and CARMA ’red noise’ curves are asymptoti-
cally close to each other as well as to the continua 4200
A 5100 A and the Hy line (Figure 2).

Due to this fact we will consider as base red noise
model OU. Also, in our calculations will be included
models given by Eq. 3 and

0
— rednoise OU \§

_sol| = Fcnt 4200

----- rednoise CARMA(4,1)
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Fig. 2 Bayesian periodograms of the simulated 'red noise’
and real light curves on a logscale.
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0 STEP: RAW DATA PREPROCESSING
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1 STEP: RESULTS



Periods FHa

Periods FLya
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[yr]

3C 390.3 Continuum 5100 A Ha 9.5+ 0.3 0.5 (0.49,0.51) < 0.00001
724+1.2 0.69 (0.68,0.7) < 0.00001
6. 0.68 (0.67,0.69) < 0.00001
4.0+ 0.04 -0. (-0.48,-0.45) < 0.00001
44 £0.1 - (-0.37,-0.33) < 0.00001

HF  1011+0.1 077  (0.76,0.78) < 0.00001
7.674£0.02 071 (0.7072) < 0.00001
075  (0.74,076) < 0.00001
5434+ 0.8  -0.47N\(-0.48,045) < 0.00001
36+04  -0337(-035-031) < 0.00001
Continuum 1370 A Ly 10.34 £0.1__ 047 (-0.49,045) < 0.00001
714002 053  (-0.54-051) < 0.00001
625142 077  (0.760.78) < 0.00001
CIV__ 942+£0.02 085  (0.84,086) < 0.00001
7.8440.02 06  (-0.61-0.59) < 0.00001
644122 085  (0.84,0.86) < 0.00001 38
468+£0.7 042 (-0.44,040) < 0.00001
34404 075  (0.74,076) < 0.00001
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Periods FH3

Periods FHa
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NGC 4151 Continuum 5100 A Ha 13.76 £+ 3.73 0.96 (0.956,0.962) < 0.00001
8.33 £2.33 0.97 (0.968,0.972) < 0.00001
5.44 +1.29 0.98 (0.978,0.981) < 0.00001
NGC 5548 Continuum 5100 A HB 13.3 £ 2.26 0.87 (0.867,0.873) < 0.00001
E1821+643 Continuum 5100 A HpA 12.76 £ 5.6 0.98 (0.979,0.981) < 0.00001
6.93 £ 1.99 0.80 (0.792,0.808) < 0.00001
4.75 £ 0.79 0.80 (0.792,0.808) < 0.00001
Continuum 4200 A H~y 12.36 £ 6.1 0.99 (0.989,0.991) < 0.00001
6.52 + 3.26 091 (0.906,0.914) < 0.00001
4.34 +£0.74 0.94 (0.937,0.943) < 0.00001
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CHECKING RESULTS ON 3 LEVELS

* 1L>non linear least square fitting of multisinusoidal models to

the observed light curves

Uy =

( 1 111

2t

—‘—l) —‘—B

« 2L>comparison of:dynamics ‘of observed light curves and time-

series models

MODELA1 (linearly coupled oscillators of 2 units)

Ua(t) = A(t) sin27t fut + ¢) + CPp—a

X B(t) sin2m fpt + 21 fp7) + W(2)

Up(t) = B(t) sin27t fyt) + cpa—sp

X A(t) sinQm f,t + 27 f,t + @)+ W(t).

3)
“4)
®)

(6)

MODEL 2 (linearly coupled oscillators of 3 units)

Uu(t) = A1) Sil’l(ZT[fal‘ +¢)+ CPb—a
X B(t) sinQ27t fpt + 270 f,T) + CPea
x C(t)sinQ2mt f.t + 27t f. 7)) + W(¢r)

Uc(t) = B(t) sin2m fp1) + C(2) sSin27t fo1) + cpa—sp

MODELS3 (nonlinearly coupled oscillators of 3 units)

U,(t) = A(t) sin27t f,t + @) + cpp—a
X B(t) sin2m ft + 27 fT) + W(t)
Ub(t) = B(t) Sin(zﬂfht) + CPa—b

x U, (1)* + W(1).

(16)
7)
(18)

19)

x A(t) sinQmf,t + 27 f, T + @) + cpasc

x A(t) SinQ7fot + 27 fut1 + ¢1) + W(2).

(7
®)
®)
(10)
(11)

(12)



3L of checking: HILBERT TRANSFORM

(00
Hlx(®)] =P [ *dr 3.1)
4
. 2
z(t) = a(t)e/XV (3.3)
14
a(t) = /x2(t) + {H[x(t)]}?, and B(t) = arctan(— = x(t)]) (3.4 2
g 04
®
£ 4.7
Hx(1))} (1) , L
a(t) ° :
-1
&) N . 2$ <
- me - 0 \ 2
0 x(t) Time 3 -1 re?
A cos(2nf t)
Figure 3.1. Instantaneous Amplitude, Phase Angle and Frequency in Complex Plane (b)

the page, to show the spiral path of the phasor. Figure 6(b) shows a continuous version of just
the tip of the /2t phasor. That /2t complex number, or if you wish, the phasor's tip, follows
corkscrew path spiraling along, and centered about, the time axis. The real and imaginary parts

of ™" are shown as the sine and cosine projections in Figure 6(b).



|L of CHECKING:multisinusiod fitting
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Estimated parameters of sinusoidal best-fitting of normalized observed light curves.

Object name LC ci pi (d) ¢; (rad) B r X2
3C 390.3 Hp 0.11 £ 0.02 3760 + 7 6.02 £+ 0.01 0.52 +0.01 0.81 4.748
0.05 + 0.03 2743 + 15 5.51 £+ 0.03
0.29 + 0.04 2300 £+ 2 547 £+ 0.03
0.17 £ 0.03 2000 £+ 2 0.17 £ 0.005
0.08 £ 0.01 1322 £ 1 —524 £ 0.1
NGC 4151 Ho 0.22 £ 0.01 5580 + 435 1.52 + 4.34 0.63 £+ 0.02 0.96 0.381
—0.07 £ 0.02 2730 £ 422 —4.20 £ 5.63
—0.08 £ 0.01 1534 + 28 —4.02 + 3.82
Ho —0.23 £ 0.01 5165 +£ 3 - 0.63 £ 0.01 0.87 1.275
NGC 5548 Hp —0.10 £ 0.01 4378 £ 70 —535 £ 1.12 0.40 £ 0.004 0.40 32.804
E1821 + 643 Continuum 0.16 £ 0.001 4511 + 1 0.02 + 0.005 0.71 £ 0.0 0.87 0.449
5100 A 0.50 £ 0.0002 2529 + 0.005 1.57 £ 0.03
0.07 £ 0.005 1977 + 0.1 1.10 £ 0.002
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Yy = cisin(— + ¢;) + B
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Flux [arb. unit]

Three linearly coupled cscillatory processes

2L of CHECKING: simulations of coupled oscillators

Periods OP2

40 P %00 e
timefarb, unit} Perlods OP1

"

&
a7

-

4

Ua(t) = A(t) - sin(27 fat + ¢) + cpp—a-
B(t) - sin(27 fot + 27 foT) + cPe—sa-
C(t) - sin(2m fet + 2w fer1) + W ()
Uc(t) = B(t) - sin(27w fot) + C(t) - sin(27 fet) + cpa—b-
A(t) - sin(27 fat + 270 faT + @) + CPasc
A(t) - sin(2m fot + 27 fam1i + &1) + W(2)

b Simulation of bidirectional coupled three-
4 oscillator network for the case of 3C 390.3.

10

Figure 12. Simulation of bidirectional coupled three oscillators network for the case of 3C 390.3. Left: Random realization of Eq. (4) form two time series
(black is U, = OP1, and red is U, = OP2) of amplitudes A = 1.954, B = 1.729,C' = 2.357, phase ¢ = ¢1 = 2.359 rad coupling strengths

1

cPa—sp = 0.7,cpg—sc = 0.5,cpp—q = 0.2,cpc—q = 0.3, frequencies f, = ﬁ, fo = ﬁ, fe = 15g- and time delay of 100 arbitrary chosen time
unites. Right: corresponding 2D correlation map, which clearly shows three clusters related to fundamental periods as well as clusters of negative correlation.
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| 3L of ch'eclging: Hilbert transform

Comparison of the phase trajectories between the
continuum of 3C 390.3 and simulated curve OP1
from the oscillatory network model
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Two linearly coupled cscillatory processes

S .
¥ . : ARP 102B
i1, R
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Flux [arb. unit
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time[arb, unit] Periods OP1

Simulation of two bidirectional coupled oscillators for the case of Arp 102B. Left: random realization of equation from two
time series (black is Ua = OP1 and red is U, = OP2) of amplitudes A =5.29, B =1.99, phase ¢ = 0.4174 rad, coupling

strengths cpa -b = 0.4, cpb . a= 0.2, time delay is 100 and periods are 500 and 300 arbitrarily chosen time units. Right:
corresponding 2D correlation map.
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Both curves are similar and non-closed,
20k i indicating either weak coupling or the absence
of periodicity. They appear to intersect
‘ themselves due to projection on to 2D phase
g or 1 space.
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Figure 16. Simulation of two bidirectional coupled oscillators for the case of NGC 4151. Left: Random realization of Eq. (8) form two time series (black is
U, = OP1, and red is U, = OP2) of amplitudes A = 6.09, B = 1.04, phase ¢ = 2.2 rad, coupling strengths cp,_,, = 0.7, cpp_sq = 0.6, periods are
500, 300 and time delay is 100 arbitrarily chosen time units. Note the similarity of sharpness of this signal ’bursts’ with features in the observed light curves.
Right: corresponding 2D correlation map .
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] Ua(t)® + W (t)
20} g where the non-linear coupling is introduced by squared term

U.(t)*. Simulated curves consists of sum and multiple of base si-
nus signals of periods of 500 and 300 arbitrary chosen time units.
ol | As a consequence, periods of 2 % 500, 2 % 300, 500, 300 are accom-

panied with an interference patterns 500 + 300, 500 — 300 (right
B I R S S R T a—TH plot in Fig. 16). Comparing this scenario with autocorrelation of
periods in Ha (see Fig. 7), the largest period of 13.76 yr can be
interpreted as interference pattern (i.e. sum) of two smaller periods

Figure 17. As in Fig. 13 but for the Ha line of NGC 4151 and simulated of 5.44 and 8.33 yr.
OP1 curve described by Eq. (8) with parameter values as in (see Fig. 16).

Note that phase curve of Ha line is shifted by + 50 units on x axis for a

better view.
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Two non-lincarly coupled oscillatory processes
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Simulation of two bidirectional coupled oscillators for the case of NGC 5548. Left: random realization of equation (19) from two time
series (black is Uz = OP1 and red is Up = OP2) of amplitudes A = 5.92, B =1.27, phases ¢ = 2.65 rad, coupling strengths cpa .6 = 0.7,
cpb - a= 0.2, periods 500 and 300 and time delay is 100 arbitrarily chosen time units
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NGC EI1821+643

Its 2D correlation maps are similar to the
case of NGC 4151. Particularly, if we look at
phase portraits of the light curves normal
limit cycles are observed in the dynamics of
E1821 + 643. They are similar to the phase
portrait of regular sinusoids. We note the
presence of two smaller elongated loops in
all phase curves reflecting two smaller

periods.
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A possible close supermassive black-hole
binary in a quasar with optical periodicity
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Recently, Graham et al. (2015, hereafter G15) reported
the detection of strong periodic variability in the optical flux
of quasar PG1302-102. PG1302 is a bright (median V-band
magnitude ~15), radio-loud quasar at redshift z = 0.2784,
with inferred black hole (BH) mass of 10%?7?*My. The
light curve in optical bands shows a quasi-sinusoidal modu-
lation, with a best-fit period of (5.2 4+ 0.2) yr and amplitude
of ~0.14 mag. G15 suggest that PG1302 may be a SMBHB
at close separation (~0.01 pc), interpreting the observed pe-
riodicity as the (redshifted) orbital period of the binary.



Abstract

Quasars have long been known to be variable sources at all
wavelengths. Their optical variability is stochastic and can be due to a
variety of physical mechanismes; it is also well-described statistically in
terms of a damped random walk model’. The recent availability of large
collections of astronomical time series of flux measurements (light
curves?349) offers new data sets for a systematic exploration of quasar

variability. Here we report the detection of a strong, smooth periodic

periodic variability 1 et™of light curves for 247,000 known,
spectroscopically confirmed quasars with a temporal baseline of about
9 years. Although the interpretation of this phenomenon is still

uncertain, the most plausible mechanisms involve a binary system of
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Figure 2 The composite light curve for PG 1302-102 over a period of 7,338 days (~ 20
years). The light curve combines data from two CRTS telescopes (CSS and MLS) with
historical data from the LINEAR and ASAS surveys, and the literature (see Methods for
details). The error bars represent one standard deviation errors on the photometry values.
The dashed line indicates a sinusoid with period 1,884 days and amplitude 0.14 mag.
The uncertainty in the measured period is 88 days. Note that this does not reflect the
expected shape of the periodic waveform which will depend on the physical properties of
the system. MJD, modified Julian day.
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ABSTRACT

Graham et al. (2015a) reported a periodically varying quasar and supermassive black hole binary candidate,
PG1302-102 (hereafter PG1302), which was discovered in the Catalina Real-Time Transient Survey (CRTS).
Its combined Lincoln Near-Earth Asteroid Research (LINEAR) and CRTS optical light curve is well fitted to
a sinusoid of an observed period of =~ 1,884 days and well modeled by the relativistic Doppler boosting of the
secondary mini-disk (D’Orazio et al. 2015). However, the LINEAR+CRTS light curve from MJD = 52700 to
MJD = 56400 covers only ~ 2 cycles of periodic variation, which is a short baseline that can be highly suscep-
tible to normal, stochastic quasar variability (Vaughan et al. 2016). In this Letter, we present a re-analysis of
PG1302, using the latest light curve from the All-Sky Automated Survey for Supernovae (ASAS-SN), which
extends the observational baseline to the present day (MJD = 58200), and adopting a maximum likelihood
method which searches for a periodic component in addition to stochastic quasar variability. When the ASAS-
SN data are combined with the previous LINEAR+CRTS data, the evidence for periodicity decreases. For
genuine periodicity one would expect that additional data would strengthen the evidence, so the decrease in
significance may be an indication that the binary model is disfavored.
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Figure 6. Best fitting of sinusoid model to the detrended (mean value is subtracted) observed light curve.
Photometric magnitudes are represented by error bars whereas model with dashed, red line. The best fitting

parameters are given in Table 2.
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Figure 1. Modeled light curve of the SMBHB system during four orbital periods (see text): (a) Individual
light curves (L1, L2) of corresponding accretion disks of components m; (doted) and msy (dashed); (b) The
modeled light curve of the total luminosity (L1 4 L2) emitted from the SMBHB. The luminosity is given in

relative units on y-axis, and time is given on x axis in days.
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Figure 2. The influence of the different perturbations (the shapes are present in upper panels (a) and (b),

see text) on the light curve of more massive component (see middle panels (c) and (d) ) and the resulting

light curves (shown in bottom panels (e) and (f) ).
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Figure 4. Observed (orange points) and modeled light curve (blue points). Dashed black line represents
the modeled curve without white noise. Time is given on x-axis in days, whereas the flux ( note that the

observed light curve is previously expressed in magnitudes) in relative units is given on y-axis.
Table 1. Inferred parameters of the model of the SMBHB system with Gaussian perturbation in the
accretion disk of the more massive component, defined in Section 2. Parameters AIC, BIC, AIC,,, BIC,,

and AIC,., BIC,. measure the quality of perturbed, non-perturbed and pure noise model, respectively (see

text).
my ma a |e| tprt |Put| Pow | P | AIC | BIC | AICy, | BIC,p | AICsc | BIC,.
[10°Mg] | [10°Mg] | [pe] | | [days] | [%] | [days] | [days]
1 10 0.015]0| 5300 | 1.7 | 330 | 1899 |-4135|-4125| -3793 | -3787 | -3028 | -3025
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Figure 6. Best fitting of sinusoid model to the detrended (mean value is subtracted) observed light curve.

Photometric magnitudes are represented by error bars whereas model with dashed, red line. The best fitting

parameters are given in Table 2.
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SUMMARY

We develop a novel hybrid method in a search for oscillatory behavior of type | AGN.

Light curves can be of arbitrary length and sampling rate, without assumption of the
periodicity range.

Hybrid method detects numerically periods, and produce 2D correlation maps of oscillations
present in the two light curves.

Using hybrid method we show a novelty in the oscillatory patterns of the all surveys
combined light curves of 5 well known type | AGN:

i) periodic variations in  3C 390.3, NGC 4151, NGC 5548 and E|82]+643

ii) differences in dynamical regimes:
- binary black hole candidates:
NGC 5548 chaotic regime
E1821+643 stable regime

-double-peaked Balmer line objects:
3C 390.3 oscillatory pattern rapidly fluctuate in 2D correlation space
Arp 102B no oscillations

iii) confirmation of physical background of detected oscillations:
our coupled oscillatory models describe oscillatory behavior in the light curves



