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Modeling of radiative properties of plasmas
Line shapes for a  plasma  diagnostic

Broadening : Doppler Stark-Broadening : Doppler, Stark 

-Zeeman splitting

Laser plasmaAnalysis results in the knowledge of 
plasma parameters, bulk motion, 
turbulence..

Applied to 
L b t l-Laboratory plasmas

-Fusion 
Astrophysics-Astrophysics Tore-Supra (D)
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Lorentz (1906)Lorentz (1906)

A model for binary collisions: one emitter and one perturbery p

The light wave is interrupted by the perturberg p y p

The times t between collisions are distributed
with a Poisson law:  v exp(- vt )

=v-1 is the average time between collisions

v1The intensity is
)v(

v1)(I 22 


3



OutlineOutline

1. Stark profile basics
2 N bi d i i i i l i2. Non binary dynamic interactions, simulation
3. Stochastic processes for line shapes
4 St h ti f l l l ti4. Stochastic processes for level populations
5.   Conclusions



St k b d i li hStark broadening : line shape

1
Fourier transform of the dipole autocorrelation function


 


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ti dte)t(CRe1)(L

Time of  interest: 2/1i /1 

tddTtC )()0()(
dipole autocorrelation function

av
tddTrtC )()0()( 

)t(U)0(d)t(U)t(d
  )t(U)0(d)t(U)t(d 

5U(t) is the emitter evolution operator 



Stark broadening : Schrödinger equationStark broadening : Schrödinger equation
and interaction potentialp

S h ödi i f h i

)t(U))t(VH()t(dUi 

Schrödinger equation for the emitter

)t(U))t(VH()t(
dt

i 0 

 Stark effect in dipolar)t(E.d)t(V


 Stark effect in dipolar
approximation

)t(E


is the electric microfield
created by the charged particles

)t(E
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Static and impact approximationsStatic and impact approximations 
St k ff t i t li iti iStark effect in two limiting regimes

//1

Static ci  
(0)E)t(E




Collision time
v/0rc 

Time of interest
  /1i

( ))(
In Schrödinger
equation

Only the microfield probability density function P(E) is required
dfpdf

Impact
ci   Binary collisionsci y



Impact approximationImpact approximation

Hydrogen plasma with Ne=1012 cm-3 or lower, T=1-100 eV
Impact binary approximation valid for both electrons and ions

H.  Griem, A. Kolb, K. Shen
M BM. Baranger
Collision operator expressed with the S matrix

    angle)v,(S12dv)v(fvdN  g

C(t)=exp(-t)    and



i

1Re1)(L
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Collision operator in second orderCollision operator in second order

11 t

second order approximation
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The microfield autocorrelation fonction is an importantThe microfield autocorrelation fonction is an important 
statistical property for the line shape 
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Strong simultaneous collisionsStrong simultaneous collisions

• Non binary collisions are common for ions
They can be treated approximately by kinetic theory-They can be treated approximately by kinetic theory

(analytic model by  J. Dufty,  particle point of view)
A i fi ld fi ld i t f i h b f l-A microfield field point of view has been more successful. 

Two approaches:
-Stochastic process for the microfieldp
-Ab initio simulation (intermediate between particle and 

microfield)microfield)



Non binary effects: numerical simulationNon binary effects: numerical simulation

Many moving charged particles perturb simultaneously the emitter 

i) Mi fi ld i l ti E(t)i) Microfield simulation →E(t)

ii) Integration of Schrödinger equation→C(t) )dttt(U 

iii) Fourier transform→line shape
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Benchmark profiles by simulation: ion dynamicsBenchmark profiles by simulation: ion dynamics

Lyman alpha N =2 1017 cm-3 T=15 500 KLyman alpha, Ne 2.10 cm , T 15 500 K, 
Argon plasma containing traces of hydrogen

Static ions
Experiment by Geisler et al.

Ion dynamics

p y
Spectral Line Shapes vol. 1

experiment
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Stochastic processes for line shapesStochastic processes for line shapes

Poisson process in nuclear magnetic resonance:
Anderson 1954, Kubo 1954

Model Microfield  Method:
(Poisson Step and Kangaroo Process):

i d d i hBrissaud and Frisch 1971
Seidel 1977
F i h 1989

Statistical properties of the microfield are used:

Frerichs 1989
Stehlé 1994, 1999, 2010
Statistical properties of the microfield are used:
Static microfield pdf           )E(P

15Microfield correlation function )t(E)0(E




A renewal process: first stepA renewal process: first step




The microfield is 




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tttE

tt0,E
The microfield is
stepwise constant




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
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
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
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 212 ttt,E
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













n1nn ttt,EFirst Step 

-t=0 not a jumping time
Th i fi ld d l -The microfield modulus 

is distributed with the 
df )E(P


pdf
-The waiting time  obeys  
to a conditionnal pdf

)E(P

to a conditionnal pdf

)Et(v

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Renewal process: next stepsRenewal process: next steps


-The microfield modulus is distributed with the pdf
-The waiting time for all but the first step obey to a pdf

)E(Q


)Et(w


How to obtain Q , v and w? We require the stationarity of 

)(

the process, and find:

 )E(P)E0(v


h i t ti P






E0(v

)E(P)E0(v
)E(Q

s




where <….>S is a static average over P










)Et(v
)Et(w

s




The statistical properties of the process are given by P and v





)Et(v

)Et(w 
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The statistical properties of the process are given by P and v



Using the microfield correlationUsing the microfield correlation

The pdf P and v have to reflect the main statistical features of the 
microfield.

2
We suppose to have isotropic plasma, and use  
P(E) is known from kinetic theory (Hooper 1968)

2E4)E(P)E(P 


We can relate the microfield autocorrelation function RP of the 
renewal process to v(t│E):





t

RP EtdtEPdEEt )'(v')()(
0

2

We can impose that RP is equal to the true microfield correlation:
t0

This expression is available from kinetic theory (Rosenbluth)
)t(E)0(ERP



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This expression is available from kinetic theory (Rosenbluth)



Choice of a stochastic process:
Kangaroo Process (KP)

Brissaud and Frisch use the KP, a Markovian process losing its 
memory not only when a jump occurs, but at every time.
For the KP, one obtains that w=v, and 

))(()()(
Where v(E)=v(0│E) is  the jumping frequency

)t)E(vexp()E(v)Et(w 

This leads to the solution for the KP evolution operator:

)E'(U~)E(v)E'(U~)(U~

1
ssKP


Static 

)E'(U~)E(v)E'(U~)E(v)E(v
s

1

s
2

s 



 

 average
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Simulation calculation of the 
stochastic process

Frerichs proposed in 1989 a simulation of the stochastic process.
Applied to the KP, we generate a history of the microfield according 
to P(E) for the first step, and Q(E) for the following.
The waiting time distribution is 
│v(t│E)=v(E)exp(-v(E)t)

h h i fi ld i d i h l iAt each step, the microfield is constant, and so is the evolution 
operator. The evolution operator may be written as:

U(tn,0)=U(tn, tn-1) U(tn-1, tn-2)……U(t1,0)

The solution for one history is a product of constant operators

20



Simulation of the stochastic processSimulation of the stochastic process
We need to average over a large set of historiesWe need to average over a large set of histories
Let us illustrate this on the simple case of Lyman alpha
For each value of the microfield the dipole correlation function is p
constant

21



Results for Lyman y
Comparison of line profiles (ions and electrons)Comparison of line profiles (ions and electrons)

Simulated KP (original MMM)

22Ab initio simulation



Results for Lyman y
Comparison of dipole correlation functions (ions only)Comparison of dipole correlation functions (ions only)

Simulated KP (original MMM)

D bli f j i fDoubling of jumping frequency

23Ab initio simulation



Other stochastic process:
Theta process, CTRW

Seidel proposed the theta process, with a persistent memory

v(t│E)=[T(E) –t]/T(E)
w(t│E) =[t-T(E)]

We are also using the continuous time random walk (CTRW) for 
i l di ffincluding memory effects

O i i t i ti t t f ilib i l ff t d bOur aim is to investigate out of equilibrium plasma affected by 
turbulence (magnetic fusion, astrophysics)

Waiting time Pdf with long tails (Levy type distribution) are being 
tested

24
tested



OutlineOutline

1. Stark spectral line profile in a plasma
2 N bi d i i i2. Non binary dynamic interactions
3. Stochastic processes for line shapes
4 St h ti f l l l ti4. Stochastic processes for level populations
5.   Conclusions



Turbulent fluctuations may be 
represented by a stochastic process

-Atomic populations in presence of temperature fluctuations
-The pdf and correlation functions of the fluctuations are measuredp

We are looking for the solution of a collisional-radiative model, in g
presence of a time dependent fluctuation

Array of atomic populations for levels 1 to n;
X(t)={x1(t), x2(t)……xn(t)}

Matrix M(T(t)) of transition rates between levels
Fluctuating fluid variable T(t)

dX( )/d M(T( )) X( )dX(t)/dt=M(T(t)) X(t)



Solution of the kinetic equationSolution of the kinetic equation 
We use an exponential waiting time pdf with a jump frequency v~The Laplace transform of  X(t) may be written after an average 
over the fluctuations:

)(sX

Wh i t ti th fl t ti i bl

  )s(X~)s(X~vI)s(X~ S
1

S




)(X~Where is  a static average over the fluctuating variable

Eff t f fl t ti th t 1 2 2

)s(XS

Effect of fluctuations on the system 1s,2s,2p
-Increase of 2s and 2p populations 
Population of 2s increases by-Population of 2s increases by

a factor 2 when going from
a static regime (t << t ) toa static regime (tat << tfl ) to
a  diabatic one (tat >> tfl )

tat: atomic relaxation time,  tfl: typical fluctuation time



SummarySummary

-Accurate Stark profile need to retain the dynamics of the p y
ionic field for many astrophysical and laboratory plasma

-Realistic models are provided by ab initio simulation or
efficient stochastic processes

-The Kangaroo process may be improved by including
memory effects

h i fl ibl d d l-Stochastic processes are flexible, and ready to treat several
problems in turbulent plasmas


